This study investigated the changes in nitric oxide (NO) together with inducible nitric oxide synthase (iNOS) content and enzyme activity at 0, 4, 12, 24, and 48 h following acute muscle stretch injury. A single stretch injury was induced to the tibialis anterior muscle of 30 male New Zealand white rabbits (n = 6 at each time point). Injured and uninjured contralateral sham-operated muscles were harvested and analyzed for NO levels, iNOS content, and iNOS activity at each time point. Furthermore, three animals were used to estimate baseline NO levels and iNOS activity. There was a progressive reduction in NO content in the injured and the sham-operated muscles up to 24 h postoperation and stretch injury (p < 0.05). At 48 h postinjury, however, NO levels were 146% higher in injured muscles than in sham-operated muscles (p < 0.05). iNOS protein content was higher at 4 h and 48 h in injured versus shamoperated muscles (p < 0.05). Similarly, iNOS activity was higher at 4 h (p < 0.05) and at 48 h (p < 0.01) in injured versus sham-operated muscles. These results suggest that NO may play an active role during the postinjury recovery of skeletal muscle modulated by iNOS expression.

Download full-text PDF

Source
http://dx.doi.org/10.2170/jjphysiol.R614DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
sham-operated muscles
16
stretch injury
12
inos activity
12
changes nitric
8
oxide inducible
8
inducible nitric
8
oxide synthase
8
tibialis anterior
8
anterior muscle
8

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!