Signal transduction via ionotropic glutamate receptors is found in many life forms, from protozoa to mammals. Glutamate is the main excitatory neurotransmitter in the mammalian CNS, were fast postsynaptic depolarisation is induced by the activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors. In addition to their important physiological role, excessive AMPA receptor stimulation is also a hallmark of excitotoxicity-related diseases, like ischaemic stroke. Conversely, AMPA receptor inhibitors were proposed to be useful neuroprotective drugs. First generation AMPA receptor blockers were competitive antagonists, like NBQX, which showed robust neuroprotection in a variety of disease-related animal models. Its clinical use, however, was restricted by the very low solubility, inducing kidney precipitaton in vivo. Second generation competitive antagonists are available, which do not possess this property. None of those, however, up to now is in clinical use. Competitive AMPA receptor antagonists are not the first choice for neuroprotective drugs, since due to receptor kinetics they preferently suppress the physiological relevant component of the postsynaptic glutamate response. Non-competitive blockers, like 2,3-benzodiazepines or the novel neuroprotectant BIIR 561 should be suited better for the treatment of stroke. The latter compound is also described as blocker of voltage-gated sodium channels. Targetting more than one mechanism in the excitotoxicity cascade might be a fruitful approach for the development of neuroprotective drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568007053544129 | DOI Listing |
PLoS Biol
January 2025
Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China.
The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:
Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!