Novel 14-alkoxy-substituted (e.g. allyloxy, benzyloxy, naphthylmethoxy) morphinan-6-one derivatives were synthesized and biologically evaluated. Compounds 6-9 and 11 displayed affinities in the subnanomolar range to mu opioid receptors which were comparable to 14-O-methyloxymorphone (1) and 14-methoxymetopon (3), and higher than oxymorphone (2). Opioid binding affinity was sensitive to the character and length of the substituent in position 14. In smooth muscle preparations they behaved as potent agonists. Antinociceptive potencies of compounds 6-11 in the hot-plate test after sc administration in mice were considerably greater than the potency of morphine. In the colonic propulsion test, the most potent analgesic compound 7 showed negligible constipating activity at the analgesic dose. These findings provide further evidence that the nature of the substituent at position 14 has a major impact on the abilities of morphinans to interact with opioid receptors. Introduction of a 5-methyl group has no significant effect on in vitro biological activities, but resulted in decreased antinociceptive potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm040894o | DOI Listing |
Bioorg Med Chem Lett
January 2025
Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.
Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:
Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.
The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.
View Article and Find Full Text PDFBiomedicines
January 2025
Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!