An exhaustive ring-based algorithm, HierS, has been developed in order to provide an intuitive approach to compound clustering for analyzing high-throughput screening results. The recursive algorithm rapidly identifies all possible ring-delimited substructures within a set of compounds. Molecules are grouped by shared ring substructures (scaffolds) so that common scaffolds obtain higher membership. Once all of the scaffolds for a set of compounds are identified, the hierarchical structural relationships between the scaffold structures are established. The complex network of hierarchical relationships is then utilized to navigate compounds in a structurally directed fashion. When the scaffold hierarchy is traversed, over-represented structural features can be rapidly identified so that excess compounds that contain them can be removed without significantly impacting the structural diversity landscape of the compound set. Furthermore, the removed compounds can provide the opportunity to follow-up on active compounds that had previously been discarded because of practical limitations on follow-up capacity. A Web-based interface has been developed that incorporates this algorithm in order to allow for an interactive analysis. In addition, biological data are coupled to scaffolds by the inclusion of activity histograms, which indicate how the compounds in each scaffold class performed in previous high-throughput screening campaigns.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm049032dDOI Listing

Publication Analysis

Top Keywords

high-throughput screening
8
set compounds
8
compounds
7
hiers hierarchical
4
scaffold
4
hierarchical scaffold
4
scaffold clustering
4
clustering topological
4
topological chemical
4
chemical graphs
4

Similar Publications

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

To investigate whether the immunohistochemical results of two markers PMS2 and MSH6 (2-MMR) could replace the four markers MLH1, PMS2, MSH2 and MSH6 (4-MMR) to detect mismatch repair deficient (dMMR) cancers. A retrospective analysis was conducted with summary of immunohistochemical data from 7 867 cases of gastric cancer, colorectal cancer, endometrial cancer, and other diseases in the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China, from March 2018 to March 2023. The consistency of 2-MMR and 4-MMR results was examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!