Phase transitions in crystals of racemic long chain 2-amino alcohols.

Chem Phys Lipids

National and Kapodistrian University of Athens, Chemistry Department, Laboratory of Physical Chemistry, Panepistimiopolis, Athens 157 71, Greece.

Published: May 2005

Various techniques, namely differential scanning calorimetry, optical microscopy, dielectric and Raman spectroscopy, all covering a wide range of temperatures, were used to study the thermodynamically stable phases and molecular mobility of crystals of long chain 2-amino alcohols. The results showed that two different crystal forms are present in each sample. The temperature behaviour of the phases is studied in details.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2005.02.007DOI Listing

Publication Analysis

Top Keywords

long chain
8
chain 2-amino
8
2-amino alcohols
8
phase transitions
4
transitions crystals
4
crystals racemic
4
racemic long
4
alcohols techniques
4
techniques differential
4
differential scanning
4

Similar Publications

Saturated fat in an evolutionary context.

Lipids Health Dis

January 2025

Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.

Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.

View Article and Find Full Text PDF

Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

Formulation screening of lyophilized mRNA-lipid nanoparticles.

Int J Pharm

January 2025

Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany; ten23 health AG, Mattenstr. 22, Basel 4058 Switzerland. Electronic address:

Lipid nanoparticles (LNPs) have demonstrated their therapeutic potential as safe and effective drug delivery systems for nucleic acids during the COVID-19 pandemic. However, one of the main challenges during technical CMC (Chemistry, Manufacturing, and Controls) development is their long-term stability at temperatures of 2-8 °C or higher, which may be improved by the removal of water by lyophilization. In this study, we identified lyo-/cryo-protectants for freeze-dried mRNA-LNP formulations beyond conventional excipients such as sucrose and trehalose as T-modifiers using polyA as a surrogate.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!