Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA. Two other extended 5'-UTR forms of AS mRNA, resulting from upstream initiations, contain an out-of-frame, upstream open reading frame (uORF). In this study, the function of the extended 5'-UTRs of AS mRNA was investigated. Single base insertions to place the uORF in-frame, and mutations to extend the uORF, demonstrated functionality, both in vitro with AS constructs and in vivo with luciferase constructs. Overexpression of the uORF suppressed endothelial AS protein expression, whereas specific silencing of the uORF AS mRNAs resulted in the coordinate up-regulation of AS protein and NO production. Expression of the full-length of the uORF was necessary to mediate a trans-suppressive effect on endothelial AS expression, demonstrating that the translation product itself affects regulation. In conclusion, the uORF found in the extended, overlapping 5'-UTR AS mRNA species suppresses endothelial AS expression, providing a novel mechanism for regulating endothelial NO production by limiting the availability of arginine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M500106200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!