Objective: The purpose of this study is to ascertain the effects of spatially variable ACh distributions on arrhythmogenesis in a morphologically realistic computer model of canine atria.

Background: Vagal stimulation releases acetylcholine (ACh), which causes a dose-dependent reduction in action potential duration (APD) in the atria. Due to the nonuniform distribution of nerve endings, APD dispersion may result, which has been shown to play a role in the breakup of activity.

Methods: Reentry was initiated in a computationally efficient, morphologically realistic computer model of the atria. Discrete regions corresponding to ACh release sites, referred to as islands, were assigned shortened APDs in an ACh-dependent fashion. Island APD was varied as well as the basal APD. The window of vulnerability for ectopic beat-induction of sustained reentry was determined for both left atrial(LA) and right atrial (RA) stimulation. The resulting reentries were categorized based on type and location.

Results: 1) Atrial geometry severely restricts the formation of reentrant circuits. 2) Wave fractionation only occurred for large differences between island and basal APD. 3) Small ACh concentration differences produced stable figure-of-8 reentrant patterns. 4) Large islands displayed more wave breakup but could sometimes anchor reentries.

Conclusions: Large APD gradients produced by ACh heterogeneity can lead to a breakdown of organized activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2004.03.077DOI Listing

Publication Analysis

Top Keywords

action potential
8
potential duration
8
morphologically realistic
8
realistic computer
8
computer model
8
basal apd
8
apd
6
ach
5
vagally induced
4
induced dispersion
4

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Background: As China's "Internet + Health" initiative advances, the digital economy significantly influences the quality of medical and health services. However, there is a research gap concerning the digital economy's specific impacts, mechanisms, and marginal effects on these services. This gap impedes a comprehensive understanding of the digital economy's potential in healthcare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!