Aim: To study the effect of long-term ethanol consumption on jejunal lipase and disaccharidase (sucrase, maltase, and lactase) activities in rats and its gender difference.

Methods: Age-matched male and female Wistar rats were fed control or ethanol-containing liquid diets for 12 wk following the Lieber-DeCarli model. According to both the plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, 40 rats were divided into four groups as follows: male control group (MC), male ethanol group (ME), female control group (FC), and female ethanol group (FE).

Results: After ethanol feeding for 12 wk, the results revealed that plasma AST and ALT activities of group ME were significantly increased by 58% and 92%, respectively, than those of group MC (P<0.05). Similarly, plasma AST and ALT activities of group FE were also significantly increased by 61% and 188%, respectively, than those of group FC (P<0.05). Fat accumulation was observed in both ethanol-treated groups, while fatty changes were more severe in group FE than those in group ME. The induction of hepatic microsomal cytochrome P450 2E1 (CYP2E1) was obviously seen in group ME and group FE, but was not detected in group MC and group FC. Jejunal lipase activity of group ME was significantly increased by 1.25-fold than that of group MC (P<0.05). In contrast to, sucrase, maltase, and lactase activities of group ME were significantly decreased by 63%, 62% and 67%, respectively, than those of group MC (P<0.05). Similarly, activities of these three enzymes of group FE were also significantly decreased by 43%, 46% and 52%, respectively, than those of group FC (P<0.05). There were no significant epithelial changes of the duodenal mucosa in any group.

Conclusion: Long-term ethanol consumption significantly can increase jejunal lipase and decrease jejunal disaccharidase activities in both male and female rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305751PMC
http://dx.doi.org/10.3748/wjg.v11.i17.2603DOI Listing

Publication Analysis

Top Keywords

long-term ethanol
8
ethanol consumption
8
consumption jejunal
8
jejunal lipase
8
lipase disaccharidase
8
male female
8
activities rats
8
alt activities
8
control group
8
ethanol group
8

Similar Publications

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

In vitro analysis of composition profiles of resins for 3D printing of dentures.

J Dent

January 2025

Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:

Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.

Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!