The purpose of the present study was to determine the age-related changes in myosin heavy chain (MHC) composition and muscle oxidative and glycolytic capacity in 18 horses ranging in age from two to 30 years. Muscle samples were collected by excisional biopsy of the semimebranosus muscle. MHC expression and the key enzymatic activities were measured. There was no significant correlation between horse age and the proportions of type-IIA and type-IIX MHC isoforms. The percentage of type-I MHC isoforms decreased with advancing age. Muscle citrate synthase activity decreased, whereas lactate dehydrogenase activity increased with increasing age. Muscle 3-OH acyl CoA dehydrogenase activity did not change with ageing. The results suggest that, similar to humans, the oxidative capacity of equine skeletal muscle decreases with age. The age-related changes in muscle metabolic properties appear to be consistent with an age-related transition in MHC isoforms of equine skeletal muscle that shifts toward more glycolytic isoforms with age.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2004.03.016DOI Listing

Publication Analysis

Top Keywords

age-related changes
12
equine skeletal
12
skeletal muscle
12
mhc isoforms
12
muscle
10
metabolic properties
8
age muscle
8
dehydrogenase activity
8
age
6
mhc
5

Similar Publications

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Introduction: Several anthropometric indices reflecting cardiometabolic risks have been developed, but the relationship of body composition with arterial stiffness remains unclear. We aimed to determine the interaction between age-related anthropometric changes and progression of arterial stiffness.

Methods: This research analyzed cross-sectional data (N=13,672) and 4-year longitudinal data (N=5,118) obtained from a healthy Japanese population without metabolic disorders.

View Article and Find Full Text PDF

The main purpose of this study was to examine the age-related changes in inhibitory control of 450 children at the ages of 7-8, 11-12, and 14-16 when controlling for working memory capacity (WMC) and processing speed to determine whether inhibition is an independent factor far beyond its possible reliance on the other two factors. This examination is important for several reasons. First, empirical evidence about age-related changes of inhibitory control is controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!