In this paper we describe the preparation of some biphenylquinuclidine derivatives and their evaluation as inhibitors of squalene synthase in order to explore their potential in the treatment of the parasitic diseases leishmaniasis and Chagas disease. The compounds were screened against recombinant Leishmania major squalene synthase and against Leishmania mexicana promastigotes, Leishmania donovani intracellular amastigotes and Trypanosoma cruzi intracellular amastigotes. Compounds that inhibited the enzyme, also reduced the levels of steroids and caused growth inhibition of L. mexicana promastigotes. However there was a lower correlation between inhibition of the enzyme and growth inhibition of the intracellular parasites, possibly due to delivery problems. Some compounds also showed growth inhibition of T. brucei rhodesiense trypomastigotes, although in this case alternative modes of action other than inhibition of SQS are probably involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2005.02.060 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, 150040, Hei-longjiang, China.
The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".
View Article and Find Full Text PDFMol Metab
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. Electronic address:
J Agric Food Chem
December 2024
Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
J Biomol Struct Dyn
December 2024
Laboratory of Biology and Health, Faculty of Sciences Ben M'Sick, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco.
Squalene synthase (SQS) plays a crucial role in the cholesterol biosynthetic pathway. Its distinctive strategic position makes it a promising candidate for targeting and developing new anti-hypercholesterolemic agents. To uncover novel phytochemical scaffolds as potential inhibitors of SQS, we employed a structure-based virtual screening approach that involves screening 545 phytochemicals collected from Moroccan aromatic and medicinal plants and filtering them based on RMSD values and their affinity towards the target enzyme.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!