Cellular fatty acid uptake is facilitated by a number of fatty acid transporters, FAT/CD36, FABPpm and FATP1. It had been presumed that FABPpm, was confined to the plasma membrane and was not regulated. Here, we demonstrate for the first time that FABPpm and FATP1 are also present in intracellular depots in cardiac myocytes. While we confirmed previous work that insulin and AICAR each induced the translocation of FAT/CD36 from an intracellular depot to the PM, only AICAR, but not insulin, induced the translocation of FABPpm. Moreover, neither insulin nor AICAR induced the translocation of FATP1. Importantly, the increased plasmalemmal content of these LCFA transporters was associated with a concomitant increase in the initial rate of palmitate uptake into cardiac myocytes. Specifically, the insulin-stimulated increase in the rate of palmitate uptake (+60%) paralleled the insulin-stimulated increase in plasmalemmal FAT/CD36 (+34%). Similarly, the greater AICAR-stimulated increase in the rate of palmitate uptake (+90%) paralleled the AICAR-induced increase in both plasmalemmal proteins (FAT/CD36 (+40%)+FABPpm (+36%)). Inhibition of palmitate uptake with the specific FAT/CD36 inhibitor SSO indicated that FABPpm interacts with FAT/CD36 at the plasma membrane to facilitate the uptake of palmitate. In conclusion, (1) there appears to be tissue-specific sensitivity to insulin-induced FATP1 translocation, as it has been shown elsewhere that insulin induces FATP1 translocation in 3T3-L1 adipocytes, and (2) clearly, the subcellular distribution of FABPpm, as well as FAT/CD36, is acutely regulated in cardiac myocytes, although FABPpm and FAT/CD36 do not necessarily respond identically to the same stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.11.118DOI Listing

Publication Analysis

Top Keywords

palmitate uptake
16
fatty acid
12
insulin aicar
12
cardiac myocytes
12
induced translocation
12
rate palmitate
12
acid transporters
8
fat/cd36
8
fabppm fatp1
8
plasma membrane
8

Similar Publications

Article Synopsis
  • Endurance training enhances hepatic gluconeogenesis, especially in the presence of norepinephrine (NE), even without other hormones.
  • Trained rat liver cells show significantly higher gluconeogenesis and lactate uptake compared to untrained controls, particularly when stimulated by NE.
  • Additionally, trained hepatocytes exhibit increased glucose production in the presence of palmitate, underscoring the metabolic adaptations resulting from endurance training.
View Article and Find Full Text PDF

Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.

View Article and Find Full Text PDF

Mangiferin and EGCG Compounds Fight Against Hyperlipidemia by Promoting FFA Oxidation via AMPK/PPAR.

PPAR Res

December 2024

Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.

Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.

View Article and Find Full Text PDF

Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of () are closely linked to intracellular residency within macrophages. Our previous work showed that murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active , with striking differences in immunometabolic gene expression.

View Article and Find Full Text PDF

Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!