Our newly developed drug delivery carrier, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was designed for brain drug delivery. CBSA, as a brain specific targetor, was covalently conjugated with the maleimide function group at the distal of poly(ethyleneglycol) (PEG) surrounding the nanoparticles. To evaluate its blood-brain barrier (BBB) transcytosis and toxicity against the BBB endothelial tight junction, we have explored a method of coculture with brain capillary endothelial cells (BCECs) on the top of micro-porous membrane of cell culture insert and astrocytes on the bottom side. The permeability of 14C-labeled sucrose was determined. For the CBSA-NP transcytosis study, a lipophilic fluorescent probe, 6-coumarin, was incorporated into nanoparticles. The BBB permeability of CBSA-NP in vitro was calculated and compared with native bovine serum albumin (BSA) conjugated pegylated nanoparticles (BSA-NP). As the coculture model, the transendothelial electrical resistance reached up to 313+/-23 ohms cm2. The tight junction between BCECs in the coculture could be visualized by scanning electron microscopy and transmission electron microscopy. The unchanged permeability of 14C-labeled sucrose comparing to that in the appearance of 200 microg/ml of CBSA-NP proved that CBSA-NP did not impact the integrity of BBB endothelial tight junctions. CBSA-NP also showed little toxicity against BCECs. The permeability of CBSA-NP was about 7.76 times higher than that of BSA-NP, while the transcytosis was inhibited in the excess of free CBSA. It was concluded that CBSA-NP preferentially transported across BBB with little toxicity, which offered the possibility to deliver therapeutic agents to CNS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2005.01.043 | DOI Listing |
Pharmaceutics
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.
View Article and Find Full Text PDFMolecules
January 2025
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads.
View Article and Find Full Text PDFBiomaterials
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China. Electronic address:
Fluorescence imaging in the second near-infrared window (NIR-II) has shown tremendous potential for in vivo monitoring of biological processes, offering high spatial resolution and real-time imaging capabilities. Conjugated polymers, commonly used as photothermal agents (PTAs) in photothermal therapy, have emerged as promising candidates for NIR-II imaging. However, their imaging efficiency is compromised by aggregation, which arises from strong π-π stacking interactions between their extended π-conjugated backbones.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States.
With increasing prevalence globally, obesity presents unique challenges to the clinical management of other diseases. In the case of acute respiratory distress syndrome (ARDS), glucocorticoid therapy (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!