We report Monte Carlo simulation results for freezing of Lennard-Jones carbon tetrachloride confined within model multiwalled carbon nanotubes of different diameters. The structure and thermodynamic stability of the confined phases, as well as the transition temperatures, were determined from parallel tempering grand canonical Monte Carlo simulations and free-energy calculations. The simulations show that the adsorbate forms concentric molecular layers that solidify into defective quasi-two-dimensional hexagonal crystals. Freezing in such concentric layers occurs via intermediate phases that show remnants of hexatic behavior, similar to the freezing mechanism observed for slit pores in previous works. The adsorbate molecules in the inner regions of the pore also exhibit changes in their properties upon reduction of temperature. The structural changes in the different regions of adsorbate occur at temperatures above or below the bulk freezing point, depending on pore diameter and distance of the adsorbate molecules from the pore wall. The simulations show evidence of a rich phase behavior in confinement; a number of phases, some of them inhomogeneous, were observed for the pore sizes considered. The multiple transition temperatures obtained from the simulations were found to be in good agreement with recent dielectric relaxation spectroscopy experiments for CCl(4) confined within multiwalled carbon nanotubes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1881072DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
monte carlo
8
multiwalled carbon
8
transition temperatures
8
adsorbate molecules
8
freezing
5
molecular modeling
4
modeling freezing
4
freezing simple
4
simple fluids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!