Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new family of salt-containing, mixed-metal silicates (CU-14), Ba6Mn4Si12O34Cl3 (1) and Ba6Fe5Si11O34Cl3 (2), was synthesized via the BaCl2 salt-inclusion reaction. These compounds crystallize in the noncentrosymmetric (NCS) space group Pmc2(1) (No. 26), adopting 1 of the 10 NCS polar, nonchiral crystal classes, mm2 (C2v). The cell dimensions are a = 6.821(1) A, b = 9.620(2) A, c = 13.172(3) A, and V = 864.4(3) A3 for 1 and a = 6.878(1) A, b = 9.664(2) A, c = 13.098(3) A, and V = 870.6(3) A3 for 2. The structures form a composite framework made of the (M(4+x)Si(12-x)O34)9- (M = Mn, x = 0; M = Fe, x = 1) covalent oxide and (Ba6Cl3)9+ ionic chloride sublattices. The covalent framework exhibits a pseudo-one-dimensional channel where the extended barium chloride lattice (Ba3Cl1.5)(infinity) resides, and it consists of fused eight-membered meta-silicate rings propagating along [100] via sharing two opposite [Si2O7]6- units to form an acentric lattice. Single-crystal structure studies also reveal the ClBa4 unit adopting an interesting seesaw configuration, in which the lone pair electrons of chlorine preferentially face the oxide anions of the transition metal silicate channel, thus forming the observed polar frameworks. Similar to the synthesis of organic-inorganic hybrid materials, the salt-inclusion method facilitates a promising approach for the directed synthesis of special framework solids, including NCS compounds, via composite lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic050228t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!