In this viewpoint article, I summarize data showing that the astrocytic swelling that occurs early after the acute CNS pathologies ischemia and traumatic brain injury is damaging. We have proposed that one reason may be the release of excitatory amino acids (EAA) via volume-activated anion channels (VRACs) that are activated by such swelling. This release could be a target for therapy, which could involve blocking the astrocytic swelling or the release mechanisms. The transport mechanisms likely causing the early astrocytic swelling are therefore summarized. In terms of targeting the release mechanisms, we have found a potent inhibitor of VRACs, tamoxifen, to be strongly neuroprotective in focal ischemia with a therapeutic window of 3 h after initiation of the ischemia. The question, however, of whether neuroprotection by tamoxifen can be solely attributed to VRAC inhibition in astrocytes has yet to be resolved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.20174DOI Listing

Publication Analysis

Top Keywords

astrocytic swelling
16
target therapy
8
swelling release
8
release mechanisms
8
astrocytic
4
swelling cerebral
4
ischemia
4
cerebral ischemia
4
ischemia injury
4
injury target
4

Similar Publications

Objective: Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a novel steroid sensitive autoimmune disease, without a diagnostic consensus. The purpose of this study was to improve early GFAP-A diagnosis by increasing awareness of key clinical characteristics and imaging manifestations.

Methods: Medical records of 13 patients with anti-GFAP antibodies in serum or cerebrospinal fluid (CSF) were reviewed for cross-sectional and longitudinal analysis of clinical and magnetic resonance imaging (MRI) findings.

View Article and Find Full Text PDF

To develop a scaffold suitable for simultaneous repair of both spinal cord injury (SCI) and sciatic nerve injury (SNI), we designed a multilayer composite membrane capable of unidirectional and sustained release of two factors: nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The membrane's morphology, mechanical properties, cytocompatibility, drug release kinetics, swelling, and degradation behavior were thoroughly characterized. Additionally, its ability to promote the differentiation of PC-12 cells was assessed.

View Article and Find Full Text PDF

Depression is the leading cause of disability worldwide and places a significant burden on society. Neuroinflammation is closely associated with the pathophysiology of depression. Increasing evidence suggests that astrocytes, as the most abundant glial cells in the brain, are involved in the occurrence and development of depression due to morphological abnormalities and dysfunction.

View Article and Find Full Text PDF

Background: In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis.

Methods: K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls.

View Article and Find Full Text PDF

Hepatic encephalopathy, defined as neuropsychiatric dysfunction secondary to liver disease, is a frequent decompensating event in cirrhosis. Its clinical impact is highlighted by a notable increase in patient mortality rates and a concomitant reduction in overall quality of life. Systemically, liver disease, liver function failure, portosystemic shunting, and associated multi-organ dysfunction result in the increase of disease-causing neurotoxins in the circulation, which impairs cerebral homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!