Objective: The ductus venosus (DV) and the intrahepatic branches of the portal vein (BPV) play an important role in umbilical blood distribution to the fetal liver and the rest of the fetal circulation. Increased DV shunting is a major fetal survival mechanism during stress situations. The availability of a nonpregnant primate animal model with similar structure and function would greatly improve our understanding of DV function. However, the anatomic and histologic structure of the DV and the BPV have not been thoroughly investigated in any nonhuman primate species.

Methods: Anatomic and immunohistochemical (Masson's and alpha-smooth actin stains) investigations were performed on 17 baboon fetuses at 173 +/- 5 days' gestation (mean +/- SEM, term = 180 days) (Papio sp. ) and 3 near term rhesus (Macaca mulatta) fetuses.

Results: In both species the branchless, funnel-shaped DV coursed cranially, posteriorly, and slightly oblique to the left side. The DV and the efferent hepatic veins drained into a dilated ampullary area (the collectus venosus) that joined directly with the inferior cava. The length of the DV in baboons increased with gestational age ( r = 0.86, n = 16). In 4 baboon fetuses, we observed an asymmetrical muscular lip at the isthmic portion of the DV. The media of intrahepatic BPV contained more smooth muscle cells than the media of the DV.

Conclusion: In nonhuman primate fetuses, the DV drains into a dilated ampullary area. An asymmetrical muscular lip forms a contractile element of the isthmic portion of the DV. The increased thickness of smooth muscle tissue in the DV isthmus and intrahepatic BPV in nonhuman primate fetuses support the concept of a general organization of a contractile apparatus that performs a sphincter-like function in the central venous hepatic system and plays a key role in blood flow redistribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajog.2004.10.596DOI Listing

Publication Analysis

Top Keywords

nonhuman primate
16
primate fetuses
12
ductus venosus
8
baboon fetuses
8
dilated ampullary
8
ampullary area
8
asymmetrical muscular
8
muscular lip
8
isthmic portion
8
intrahepatic bpv
8

Similar Publications

Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.

Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.

View Article and Find Full Text PDF

Noninvasive evaluations of hormones can contribute to the assessment of health and welfare of animals. Variations in insulin levels and sensitivity, for example, have been linked to health concerns in non-human and human primates including insulin resistance, diabetes, and heart disease, the leading cause of death in zoo-housed gorillas. Few published studies have assessed insulin concentrations in western lowland gorillas (Gorilla gorilla gorilla), and all did so using serum.

View Article and Find Full Text PDF

Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.

View Article and Find Full Text PDF

Amylin analogs, including potential anti-obesity therapies like cagrilintide, act on neurons in the brainstem dorsal vagal complex (DVC) that express calcitonin receptors (CALCR). These receptors, often combined with receptor activity-modifying proteins (RAMPs), mediate the suppression of food intake and body weight. To understand the molecular and neural mechanisms of cagrilintide action, we used single-nucleus RNA sequencing to define 89 cell populations across the rat, mouse, and non-human primate caudal brainstem.

View Article and Find Full Text PDF

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!