Anterograde and retrograde transport of horseradish peroxidase was used to examine the afferent and efferent projections of the glossopharyngeal and vagal nerves in the lamprey, Lampetra japonica. Except for the ganglion cells and motoneurons, the distribution patterns of HRP-positive elements differed little between the two nerves. Afferent fibers mainly terminated in the ipsilateral cerebellar area, medial octavolateralis nucleus, and between the ventral octavolateralis nucleus and descending tract and nucleus of the trigeminal nerve (dV). In the cerebellar area, most of the labeled fibers were located in the molecular zone, but some penetrated into the granular zone. In the rostral part of the medial octavolateralis nucleus, labeled fibers coursed from the middle to the lateral area, and in the caudal part, they were localized in the dorsal area of the nucleus. In the area between the dV and ventral octavolateralis nucleus, labeled fibers coursed near the dorsal margin of the rostral part of the dV, and in the caudal part, they shifted dorsally. Ganglion cells and motoneurons of each nerve were also labeled.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zsj.22.469DOI Listing

Publication Analysis

Top Keywords

octavolateralis nucleus
16
labeled fibers
12
glossopharyngeal vagal
8
vagal nerves
8
ganglion cells
8
cells motoneurons
8
cerebellar area
8
medial octavolateralis
8
ventral octavolateralis
8
nucleus labeled
8

Similar Publications

Neural connections of the torus semicircularis in the adult Zebrafish.

J Comp Neurol

January 2024

Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain.

The torus semicircularis (TS) of teleosts is a key midbrain center of the lateral line and acoustic sensory systems. To characterize the TS in adult zebrafish, we studied their connections using the carbocyanine tracers applied to the TS and to other related nuclei and tracts. Two main TS nuclei, central and ventrolateral, were differentiable by their afferent connections.

View Article and Find Full Text PDF

Alpha-melanocyte stimulating hormone immunoreactivity in the brain of the cichlid fish Oreochromis mossambicus.

Neuropeptides

June 2021

Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India. Electronic address:

This study reports the distribution of a pro-opiomelanocortin-derived neuropeptide α-MSH in the brain of the cichlid fish Oreochromis mossambicus. α-MSH-ir fibres were found in the granule cell layer of the olfactory bulb, the medial olfactory tract, the pallium and the subpallium, whereas in the preoptic area of the telencephalon, few large α-MSH-ir perikarya along with extensively labeled fibres were observed close to the ventricular border. Dense network of α-MSH-ir fibres were seen in the hypothalamic areas such as the nucleus preopticus pars magnocellularis, the nucleus preopticus pars parvocellularis, the suprachiasmatic nucleus, the nucleus anterior tuberis, the paraventricular organ, the subdivisions of the nucleus recessus lateralis and the nucleus recessus posterioris.

View Article and Find Full Text PDF

Differential expression of somatostatin genes in the central nervous system of the sea lamprey.

Brain Struct Funct

May 2021

Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.

The identification of three somatostatin (SST) genes (SSTa, SSTb, and SSTc) in lampreys (Tostivint et al. Gen Comp Endocrinol 237:89-97 https://doi.org/10.

View Article and Find Full Text PDF

Background: Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS.

View Article and Find Full Text PDF

An animal's own movement exerts a profound impact on sensory input to its nervous system. Peripheral sensory receptors do not distinguish externally generated stimuli from stimuli generated by an animal's own behavior (reafference) - although the animal often must. One way that nervous systems can solve this problem is to provide movement-related signals (copies of motor commands and sensory feedback) to sensory systems, which can then be used to generate predictions that oppose or cancel out sensory responses to reafference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!