Motivation: Oligonucleotide fingerprinting of ribosomal RNA genes (OFRG) is a procedure that sorts rRNA gene (rDNA) clones into taxonomic groups through a series of hybridization experiments. The hybridization signals are classified into three discrete values 0, 1 and N, where 0 and 1, respectively, specify negative and positive hybridization events and N designates an uncertain assignment. This study examined various approaches for classifying the values including Bayesian classification with normally distributed signal data, Bayesian classification with the exponentially distributed data, and with gamma distributed data, along with tree-based classification. All classification data were clustered using the unweighted pair group method with arithmetic mean.

Results: The performance of each classification/clustering procedure was compared with results from known reference data. Comparisons indicated that the approach using the Bayesian classification with normal densities followed by tree clustering out-performed all others. The paper includes a discussion of how this Bayesian approach may be useful for the analysis of gene expression data.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bti452DOI Listing

Publication Analysis

Top Keywords

bayesian classification
12
gene expression
8
distributed data
8
classification
6
data
6
classification oligonucleotide
4
oligonucleotide fingerprints
4
fingerprints application
4
application microbial
4
microbial community
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!