The unfolded protein response pathway (UPR) compensates for excessive protein accumulation in the endoplasmic reticulum (ER). As insulin induces global protein synthesis, it may cause accumulation of unfolded proteins in the ER, thus triggering UPR. We assessed UPR activation in insulin-treated murine peritoneal macrophages using a number of markers including 78 kDa glucose response protein (GRP78), X-box-binding protein (XBP)-1, pancreatic ER kinase (PERK), eukaryotic initiation factor 2 (eIF2)alpha, and growth arrest and DNA damage (GADD)34. Exposure of cells to insulin activated UPR, as evidenced by an increased expression of GRP78, XBP-1, phosphorylated PERK (p-PERK), and p-eIF2alpha. The insulin-induced, elevated expression of GRP78 was comparable with that observed with tunicamycin, a classical inducer of ER stress. Concomitantly, insulin also up-regulated prosurvival mechanisms by elevating GADD34 and elements of the antiapoptotic pathway including Bcl-2, X-linked inhibitor of apoptosis, and phosphorylated forkhead transcription factor. In conclusion, we show here that insulin treatment does cause ER stress in macrophages, but insulin-dependent mechanisms overcome this ER stress by up-regulating UPR and the antiapoptotic pathway to promote cell survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201561PMC
http://dx.doi.org/10.1189/jlb.1104685DOI Listing

Publication Analysis

Top Keywords

murine peritoneal
8
peritoneal macrophages
8
expression grp78
8
antiapoptotic pathway
8
insulin
5
protein
5
upr
5
up-regulation grp78
4
grp78 antiapoptotic
4
antiapoptotic signaling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!