Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is estimated that more than 1.7 million workers in the United States are potentially exposed to respirable crystalline silica, with a large percentage having been exposed to silica concentrations higher than the limits set by current standards and regulations. The purpose of this study is to characterize the use of water-misting engineering controls to reduce exposure to respirable crystalline silica for construction workers engaged in the task of brick cutting. Since data concerning the efficacy of engineering controls collected at worksites is often confounded by factors such as wind, worker skill level, the experiments were conducted in a laboratory environment. A completely enclosed testing chamber housed the brick-cutting saw. Respirable dust concentrations were measured using the Model 3321 Aerodynamic Particle Sizer. Specifically, the laboratory experiment was designed to compare dust suppression through water misting using conventional freely flowing water techniques. Brass atomizing nozzles with three flow rates were used for making this comparison: low (5.0 ml s(-1) or 4.8 gal h(-1)), medium (9.0 ml s(-1) or 8.6 gal h(-1)) and high (18 ml s(-1) or 17.3 gal h(-1)). The flow rate for freely flowing water, using manufacturer-supplied equipment, was 50 ml s(-1) (48 gal h(-1)). The experiment consisted of five replications of five samples each (low-misting, medium-misting, high-misting, freely flowing water and no control). The order of sampling within each replicate was randomized. Estimates of dust reduction showed that low-misting nozzles reduced the respirable mass fraction of dust by about 63%, medium-misting nozzles by about 67%, high-misting nozzles by about 79% and freely flowing water by about 93%. Based on these results, it may be feasible to use misting to control respirable silica dust instead of freely flowing water. This strategy is of practical interest to the construction industry which must frequently limit the amount of water used on construction sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annhyg/mei011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!