Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.

J Physiol

Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.

Published: June 2005

Intact skeletal muscle fibres from adult mammals exhibit neither spontaneous nor stimulated Ca(2+) sparks. Mechanical or chemical skinning procedures have been reported to unmask sparks. The present study investigates the mechanisms that determine the development of Ca(2+) spark activity in permeabilized fibres dissected from muscles with different metabolic capacity. Spontaneous Ca(2+) sparks were detected with fluo-3 and single photon confocal microscopy; mitochondrial redox potential was evaluated from mitochondrial NADH signals recorded with two-photon confocal microscopy, and Ca(2+) load of the sarcoplasmic reticulum (SR) was estimated from the amplitude of caffeine-induced Ca(2+) transients recorded with fura-2 and digital photometry. In three fibre types studied, there was a time lag between permeabilization and spark development. Under all experimental conditions, the delay was the longest in slow-twitch oxidative fibres, intermediate in fast-twitch glycolytic-oxidative fibres, and the shortest in fast-twitch glycolytic cells. The temporal evolution of Ca(2+) spark frequencies was bell-shaped, and the maximal spark frequency was reached slowly in mitochondria-rich oxidative cells but quickly in mitochondria-poor glycolytic fibres. The development of spontaneous Ca(2+) sparks did not correlate with the SR Ca(2+) content of the fibre, but did correlate with the redox potential of their mitochondria. Treatment of fibres with scavengers of reactive oxygen species (ROS), such as superoxide dismutase (SOD) and catalase, dramatically and reversibly reduced the spark frequency and also delayed their appearance. In contrast, incubation of fibres with 50 microm H(2)O(2) sped up the development of Ca(2+) sparks and increased their frequency. These results indicate that the appearance of Ca(2+) sparks in permeabilized skeletal muscle cells depends on the fibre's oxidative strength and that misbalance between mitochondrial ROS production and the fibre's ability to fight oxidative stress is likely to be responsible for unmasking Ca(2+) sparks in skinned preparations. They also suggest that under physiological and pathophysiological conditions the appearance of Ca(2+) sparks may be, at least in part, limited by the fine-tuned equilibrium between mitochondrial ROS production and cellular ROS scavenging mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464560PMC
http://dx.doi.org/10.1113/jphysiol.2005.086280DOI Listing

Publication Analysis

Top Keywords

ca2+ sparks
32
ca2+
13
skeletal muscle
12
sparks
9
mitochondrial redox
8
sparks permeabilized
8
development ca2+
8
ca2+ spark
8
spontaneous ca2+
8
confocal microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!