We examined changes in ionic and gating currents in Ca(V)1.2 channels when extracellular Ca(2+) was reduced from 10 mm to 0.1 microm. Saturating gating currents decreased by two-thirds (K(D) approximately 40 microm) and ionic currents increased 5-fold (K(D) approximately 0.5 microm) due to increasing Na(+) conductance. A biphasic time dependence for the activation of ionic currents was observed at low [Ca(2+)], which appeared to reflect the rapid activation of channels that were not blocked by Ca(2+) and a slower reversal of Ca(2+) blockade of the remaining channels. Removal of Ca(2+) following inactivation of Ca(2+) currents showed that Na(+) currents were not affected by Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation also induced a negative shift of the reversal potential for ionic currents suggesting that inactivation alters channel selectivity. Our findings suggest that activation of Ca(2+) conductance and Ca(2+)-dependent inactivation depend on extracellular Ca(2+) and are linked to changes in selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464545 | PMC |
http://dx.doi.org/10.1113/jphysiol.2005.086561 | DOI Listing |
J Cell Sci
January 2025
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg and Ca, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg and Ca in vivo up to 90 days.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America.
Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!