Tea tree oil: in vitro efficacy in otitis externa.

J Laryngol Otol

Department of Otolaryngology, Craigavon Area Hospital, Northern Ireland, UK.

Published: March 2005

Objective: The purpose of this study was to determine the susceptibility of organisms causing otitis externa (OE) to the essential oil of Melaleuca alternifolia, or tea tree oil (TTO).

Methods: Fifty-seven swabs were taken from the ears of 52 patients with OE for culture and sensitivity. A broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of TTO for each organism.

Results: In 51 percent of the swabs taken, pathogenic organisms were cultured. Of these cultures 71 percent, both bacteria and yeast, were susceptible to TTO 2 percent or less. The only organism showing resistance to TTO was Pseudomonas aeruginosa; however 25 percent of these bacteria were sensitive.

Conclusion: Tea tree oil may have a role to play in the treatment of OE. However, more work needs to be done to enhance the anti-pseudomonal effect and to assess ototoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1258/0022215053561495DOI Listing

Publication Analysis

Top Keywords

tea tree
12
tree oil
12
otitis externa
8
percent bacteria
8
oil
4
oil vitro
4
vitro efficacy
4
efficacy otitis
4
externa objective
4
objective purpose
4

Similar Publications

Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.

View Article and Find Full Text PDF

Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, , Essential Oil.

Biomolecules

January 2025

United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.

Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.

View Article and Find Full Text PDF

Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils.

Foods

January 2025

Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.

In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!