Because persistent swelling causes cell damage and often results in cell death, volume regulation is an important physiological function in both neuronal and non-neuronal cells. Brain cell swelling has been observed not only in various pathological conditions but also during physiological synaptic transmissions. Volume-sensitive anion channels have been reported to play an important role in the regulatory volume decrease occurring after osmotic swelling in many cell types. In this study, using a two-photon laser scanning microscope and patch-clamp techniques, we found that mouse cortical neurons in primary culture exhibit regulatory volume decrease after transient swelling and activation of Cl- currents during exposure to a hypotonic solution. The regulatory volume decrease was inhibited by Cl- channel blockers or K+ channel blockers. Swelling-activated Cl- currents exhibited outward rectification, time-dependent inactivation at large positive potentials, a low-field anion permeability sequence, an intermediate unitary conductance and sensitivity to known blockers of volume-sensitive Cl- channels. Thus, it is concluded that the activity of the volume-sensitive outwardly rectifying Cl- channel plays a role in the control of cell volume in cortical neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04006.xDOI Listing

Publication Analysis

Top Keywords

cortical neurons
12
regulatory volume
12
volume decrease
12
mouse cortical
8
volume regulation
8
swelling cell
8
cl- currents
8
cl- channel
8
channel blockers
8
volume
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!