Improving P-gp expression in human mononuclear cells in vitro transfected by multidrug resistance-1 mRNA.

Chin Med Sci J

Department of Obstetrics & Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730.

Published: March 2005

Objective: To evaluate the expression and function activity of P-glycoprotein (P-gp) in human mononuclear cells (MNCs) in vitro transfected by multidrug resistance-1 (MDR1) mRNA.

Methods: Two MDR1 cDNA vectors, pT7TS_MDR1 and pGEM5Zf(+)_MDR1, were constructed and transcripted in vitro. Vector pGEM5Zf(+)_MDR1 only contained the coding region of mdr1 cDNA, and pT7TS_MDR1 also included Xeponus beta-globin 5' and 3' untranslated region. MNCs were prepared from peripheral blood of parvicellular lung cancer patient. The two human mdrl mRNAs were then transferred into human MNCs in vitro by DOTAP. And the expression efficiency and pump function of P-gp were measured with flow cytometry.

Results: Expression of P-gp significantly elevated in both transferred cells compared with untransferred cells (P < 0.01). And pT7TS_MDR1 showed higher capability in elevating the expression of P-gp than pGEM5Zf(+)_MDR1 (P < 0.01). The P-gp function was elevated in both pT7TS_MDR1 and pGEM5Zf(+) MDR1 groups. The survival ratio of MNCs in erythrocyte-lysis-solution (ELS, 86.07%) and lymphocyte-isolation-solution (LIS, 83.67%) had no significant difference. The CD34+ cells content of the MNCs used for transfection was 2.65% and 1.01% in ELS and LIS group, respectively (P < 0.01).

Conclusions: It is a feasible approach to improve P-gp expression in human MNCs by transfection of MDR-1 mRNA. And the ELS may be more suitable for purifing MNCs for mRNA transfection than LIS.

Download full-text PDF

Source

Publication Analysis

Top Keywords

p-gp expression
8
expression human
8
human mononuclear
8
mononuclear cells
8
vitro transfected
8
transfected multidrug
8
multidrug resistance-1
8
mncs vitro
8
mdr1 cdna
8
human mncs
8

Similar Publications

Glycyrrhiza uralensis Fisch. attenuates Dioscorea bulbifera L.-induced liver injury by regulating the FXR/Nrf2-BAs-related proteins and intestinal microbiota.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang 712046, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Dioscorea bulbifera L. (DBL) was a traditional Chinese medicine commonly used to treat goitre and cancer. Nevertheless, its clinical application may lead to liver injury.

View Article and Find Full Text PDF

Epigenetic and Cellular Reprogramming of Doxorubicin-Resistant MCF-7 Cells Treated with Curcumin.

Int J Mol Sci

December 2024

Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.

The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how asiatic acid (AA) affects the drug resistance in human leukemia cells (K562/ADR) resistant to adriamycin (ADR).
  • AA was found to reduce the resistance of these cells and enhance the effectiveness of ADR, as shown by various assays including CCK-8 and flow cytometry.
  • The results indicated that AA down-regulates the expression of certain proteins related to drug resistance, suggesting a potential mechanism for reversing resistance in these cancer cells.
View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.

Biochim Biophys Acta Gen Subj

December 2024

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Article Synopsis
  • Multidrug resistance (MDR) complicates the development of effective chemotherapy, with previous research showing that GnT-III expression decreases chemoresistance and that fucosylation is heightened in resistant cell models.
  • Using advanced techniques like CRISPR/Cas9, this study created a FUT4 knockout cell line to assess how fucosylation affects drug resistance by analyzing various gene expressions and drug response.
  • The findings revealed that knocking out FUT4 lowered P-glycoprotein levels and enhanced drug sensitivity, indicating that FUT4 plays a pivotal role in regulating P-glycoprotein expression through the NF-κB signaling pathway, positioning it as a potential target for overcoming MDR in cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!