Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development.

J Comp Neurol

Institut National de la Santé et de la Recherche Médicale U616, Université Pierre et Marie Curie Paris VI, Hôpital Salpêtrière, 75651 Paris, France.

Published: June 2005

Type 1 and type 8 adenylate cyclases, AC1 and AC8, are membrane bound enzymes that produce cAMP in response to calcium entry and could thus control a large number of developmental processes. We provide a detailed spatiotemporal localization of these genes in the mouse brain during embryonic and postnatal life using in situ hybridization. AC1 gene expression begins early in embryonic life (before E13), and its expression is much more widespread than in adults. Transient expression of AC1 is found in the striatum, the dorsal thalamus, the trigeminal nerve nuclei, the Purkinje cells of the cerebellum, the interneurons of the hippocampus, and the retinal ganglion cells. In all these structures, the peak of AC1 gene expression occurs during early postnatal life, decreasing by P10. After P15, AC1 expression is confined to the hippocampus, the cerebral cortex, and to the granule cells of the cerebellum. AC8 gene expression also begins early in embryonic life (E12)--but in a more limited number of regions than in adults. AC8 expression is initially restricted to the epithalamus, the hypothalamus, the superior colliculus, the cerebellar anlage the proliferative zone of the rhombic lip, and the spinal cord. The expression increases and broadens during postnatal life, particularly in the thalamus and the cerebral cortex. A transient peak of AC8 expression is found in layer IV of the somatosensory cortex. Thus, AC1 and AC8 have an early developmental onset with complementary spatiotemporal distribution patterns: AC1 is most broadly distributed in embryonic life, whereas AC8 is most broadly expressed in adulthood. Transient expression of these genes designate areas that may be particularly sensitive to neural activity/calcium-modulated cAMP responses during development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20528DOI Listing

Publication Analysis

Top Keywords

ac1 ac8
12
postnatal life
12
gene expression
12
embryonic life
12
expression
10
spatiotemporal localization
8
adenylate cyclases
8
ac1
8
cyclases ac1
8
mouse brain
8

Similar Publications

Pain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models.

View Article and Find Full Text PDF

Inhibition of human mitochondrial peptide deformylase (HsPDF) plays a major role in reducing growth, proliferation, and cellular cancer survival. In this work, a series of 32 actinonin derivatives for HsPDF (PDB: 3G5K) inhibitor's anticancer activity was computationally analyzed for the first time, using an study considering 2D-QSAR modeling, and molecular docking studies, and validated by molecular dynamics and ADMET properties. The results of multilinear regression (MLR) and artificial neural networks (ANN) statistical analysis reveal a good correlation between pIC50 activity and the seven (7) descriptors.

View Article and Find Full Text PDF

As the main secondary messengers, cyclic AMP (cAMP) and Ca trigger intracellular signal transduction cascade and, in turn, regulate many aspects of cellular function in developing and mature neurons. The group I adenylyl cyclase (ADCY, also known as AC) isoforms, including ADCY1, 3, and 8 (also known as AC1, AC3, and AC8), are stimulated by Ca and thus functionally positioned to integrate cAMP and Ca signaling. Emerging lines of evidence have suggested the association of the Ca-stimulated ADCYs with bipolar disorder, schizophrenia, major depressive disorder, post-traumatic stress disorder, and autism.

View Article and Find Full Text PDF

Genetic and preclinical studies have implicated adenylyl cyclase 1 (AC1) as a potential target for the treatment of chronic inflammatory pain. AC1 activity is increased following inflammatory pain stimuli and AC1 knockout mice show a marked reduction in responses to inflammatory pain. Previous drug discovery efforts have centered around the inhibition of AC1 activity in cell-based assays.

View Article and Find Full Text PDF

Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!