We studied the fluxes of a potassium congener (Rb(+)) in mouse hearts by (87)Rb MRS at 8.4T. The hearts were loaded with Rb(+) by perfusion with Krebs-Henseleit buffer, in which 50% of K(+) was substituted with Rb(+). We initiated Rb(+) efflux by changing the perfusion medium to Rb(+)-free buffer. Spectra were acquired every 1.85 min, and the kinetics of Rb(+) transport were analyzed by means of monoexponential fits. The rate constants of Rb(+) uptake and efflux were 0.0680 +/- 0.0028 and 0.0510 +/- 0.0051 min(-1), respectively (approximately 30% faster than in the rat heart). The ATP-sensitive potassium channel opener, P-1075 (5 microM), and mitochondrial uncoupler, 2,4-dintrophenol (50 microM), activated Rb(+) efflux from mouse hearts by approximately 35%. The mechanisms responsible for the differences in Rb(+) uptake and efflux under baseline conditions and stimulation, in comparison with rat hearts, are discussed. These data provide a background for studies of cardiac potassium transport in transgenic mouse strains.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.20450DOI Listing

Publication Analysis

Top Keywords

mouse hearts
12
potassium transport
8
rb+
8
rb+ efflux
8
rb+ uptake
8
uptake efflux
8
hearts
5
potassium
4
transport langendorff-perfused
4
mouse
4

Similar Publications

Aging is a risk factor for several chronic conditions, including intervertebral disc degeneration and associated back pain. Disc pathologies include loss of reticular-shaped nucleus pulposus cells, disorganization of annulus fibrosus lamellae, reduced disc height, and increased disc bulging. Sonic hedgehog, cytokeratin 19, and extracellular matrix proteins are markers of healthy disc.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases and plays critical roles in regulating cell fate and function. We previously showed that PP2A regulates the differentiation of CD4 T cells and the development of thymocytes. Nevertheless, its role in CD8 T cells remains elusive.

View Article and Find Full Text PDF

The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I.

Genes Dis

March 2025

Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Aging is an independent risk factor for cardiovascular diseases. Cardiac diastolic dysfunction (CDD), ultimately leading to heart failure with preserved ejection fraction (HFpEF), is prevalent among older individuals. Although therapeutics have made great progress, preventive strategies remain unmet medical needs.

View Article and Find Full Text PDF

Background: Structural heart disease is one of the leading causes of death in people with type 2 diabetes (T2D), which is not known to have an effect on exercise training. The aim of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart tissue structure, the serum level of FGF21 and the heart tissue level of β-Klotho, an FGF21 coreceptor, in HFD and HFD + STZ-induced diabetic mice.

Methods: Thirty-six male C57BL/6J mice were divided into high-fat diet (HFD) and normal chow diet (ND) groups.

View Article and Find Full Text PDF

Serinc2 antagonizes pressure overload-induced cardiac hypertrophy via regulating the amino acid/mTORC1 signaling pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China. Electronic address:

Background: Cardiac hypertrophy is characterized by the upregulation of fetal genes, increased protein synthesis, and enlargement of cardiac myocytes. The mechanistic target of rapamycin complex 1 (mTORC1), which responds to fluctuations in cellular nutrient and energy levels, plays a pivotal role in regulating protein synthesis and cellular growth. While attempts to inhibit mTORC1 activity, such as through the application of rapamycin and its analogs, have demonstrated limited efficacy, further investigation is warranted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!