Potential applications of conventional and molecular imaging to biodefense research.

Clin Infect Dis

Department of Radiology, Clinical Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Published: May 2005

Imaging methods that visualize the structure and function of the living body are widely used in patient care and biomedical research, but their full potential has not yet been applied to the study and treatment of the severe illnesses caused by pathogens of biodefense concern. "Conventional" imaging techniques (e.g., radiography, computed tomography, ultrasound, or magnetic resonance imaging) delineate anatomic changes in tissues, whereas "molecular" methods employ magnetic resonance, positron emission tomography, single-photon emission computed tomography, or optical (fluorescence or bioluminescence) imaging to detect biochemical reactions that accompany pathogen replication or host responses. We review the basic principles of these methods, describe the diseases caused by 6 pathogens classified as category A or B bioterror agents (anthrax, plague, tularemia, filoviral hemorrhagic fever, smallpox, and aerosolized equine encephalitis virus infection), and discuss how imaging could be used to study their pathogenesis in laboratory animals and to diagnose and monitor infection in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1086/429723DOI Listing

Publication Analysis

Top Keywords

caused pathogens
8
computed tomography
8
magnetic resonance
8
imaging
6
potential applications
4
applications conventional
4
conventional molecular
4
molecular imaging
4
imaging biodefense
4
biodefense imaging
4

Similar Publications

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.

Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.

View Article and Find Full Text PDF

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) constitute a heterogeneous group of clinically and genetically diverse conditions, standing as a primary cause of visual impairment among individuals aged 15-45, with an estimated incidence of 1:2000. Our study aimed to comprehensively evaluate the genetic variants underlying IRDs in the Turkish population. This study included 50 unrelated Turkish IRD patients and their families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!