The identification of bacteria in oil production facilities has previously been based on culture techniques. However, cultivation of bacteria from these often-extreme environments can lead to errors in identifying the microbial community members. In this study, molecular techniques including fluorescence in situ hybridization, PCR, denaturing gradient gel electrophoresis, and sequencing were used to track changes in bacterial biofilm populations treated with nitrate, nitrite, or nitrate+molybdate as agents for the control of sulfide production. Results indicated that nitrite and nitrate+molybdate reduced sulfide production, while nitrate alone had no effect on sulfide generation. No long-term effect on sulfide production was observed. Initial sulfate-reducing bacterial numbers were not influenced by the chemical treatments, although a significant increase in sulfate-reducing bacteria was observed after termination of the treatments. Molecular analysis showed a diverse bacterial population, but no major shifts in the population due to treatment effects were observed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-005-0222-5DOI Listing

Publication Analysis

Top Keywords

sulfide production
12
molecular techniques
8
nitrite nitrate+molybdate
8
monitoring microbial
4
microbial souring
4
souring chemically
4
chemically treated
4
treated produced-water
4
produced-water biofilm
4
biofilm systems
4

Similar Publications

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.

View Article and Find Full Text PDF

L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous HS Production.

Foods

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!