Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs) into nerve terminals triggers vesicular fusion and neurotransmitter release. However, it is unknown whether the coupling between VGCCs and synaptic vesicles (SVs) is developmentally regulated. By paired patch-clamp recordings from the mouse calyx of Held synapse, we show here that injection of a Ca(2+) buffer with slow binding kinetics (EGTA; 10 mm) potently attenuated transmitter release in young terminals [postnatal day 8 (P8)-P12] but produced little effect in older ones (P16-P18), suggesting that SVs in young synapses are loosely coupled to VGCCs, but the coupling tightens spatially during maturation. Using voltage paradigms that specifically recruit different numbers of VGCCs without changing the driving force for Ca(2+), we found that the Ca(2+) cooperativity (m), estimated from graded presynaptic Ca(2+) currents and transmitter release, was much higher in P8-P12 synapses (m = 4.8-5.5) than that in P16-P18 synapses (m = 2.8-3.0; 1 mm [Ca(2+)](o)), implying that the number of VGCCs or Ca(2+) domains required for release of single SVs decreases with maturation. The m value remained significantly different between two age groups at 35 degrees C or in 2 mm [Ca(2+)](o) and was independent of postsynaptic receptor desensitization. We demonstrated that release from P8-P12 terminals involved both N- and P/Q-type VGCCs, but P/Q-type-associated release sites specifically displayed low m values. These results suggest a developmental transformation of the release modality from "microdomain," involving cooperative action of many loosely coupled N- and P/Q-type VGCCs, to "nanodomain," in which opening of fewer tightly coupled P/Q-type VGCCs effectively induce a fusion event. Spatial tightening improves the release efficiency and is likely a critical step for the development of high-fidelity neurotransmission in this and other central synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724960 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0350-05.2005 | DOI Listing |
Front Neurol
December 2024
Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
Background: Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder of the presynaptic neuromuscular junction associated with antibody mediated dysfunction of voltage-gated calcium channels (VGCCs). LEMS can exist as a paraneoplastic syndrome, paraneoplastic-LEMS (P-LEMS), when associated with tumors, most commonly, small cell lung carcinoma (SCLC) or as a non-paraneoplastic condition (NP-LEMS) when no malignancies are detected.
Methods: A retrospective chart review was conducted in 3 tertiary hospitals in Saudi Arabia for patients diagnosed with LEMS between January 2010 and January 2020.
Cell Rep Med
November 2024
Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany. Electronic address:
Lambert-Eaton myasthenic syndrome (LEMS) is an autoantibody-mediated disease of the neuromuscular junction characterized by muscular weakness. Autoantibodies to presynaptic P/Q-type voltage-gated calcium channels (VGCCs) induce defective neuromuscular function. In severe cases, current immunosuppressive and immunomodulatory treatment strategies are often insufficient.
View Article and Find Full Text PDFCells
June 2024
Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany.
Presynaptic Ca influx through voltage-gated Ca channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca influx via all VGCC subtypes similarly.
View Article and Find Full Text PDFFront Cell Neurosci
April 2024
Leibniz Institute for Neurobiology, Magdeburg, Germany.
Introduction: The emergent coherent population activity from thousands of stochastic neurons in the brain is believed to constitute a key neuronal mechanism for salient processing of external stimuli and its link to internal states like attention and perception. In the sensory cortex, functional cell assemblies are formed by recurrent excitation and inhibitory influences. The stochastic dynamics of each cell involved is largely orchestrated by presynaptic CAV2.
View Article and Find Full Text PDFHandb Clin Neurol
March 2024
Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!