The drug-metabolizing cytochrome P450 (CYP) enzyme CYP2D6 is involved in the metabolism of several clinically important drugs. So far more than 50 different CYP2D6 allelic variants have been described, and thus there is an increased need for routine high-performance liquid chromatography (HPLC) methods for the evaluation of the functional implication of CYP2D6 polymorphism. Debrisoquine is metabolized to 4-hydroxydebrisoquine by CYP2D6, and therefore it has been used widely to determine the hydroxylation capacity of the enzyme. The aim of the present study was to develop a simple, accurate HPLC method with ultraviolet detection for the measurement of debrisoquine and 4-hydroxydebrisoquine in urine for evaluation of the relationship between CYP2D6 enzyme activity and genotypes. For the HPLC determination, a C18 extraction column was used with a flow rate of 0.8 mL/min and detection at 210 nm. The compounds were eluted from the column in less than 10 min. Coefficients of variation at all concentrations were less than 4% for both compounds. The debrisoquine/4-hydroxydebrisoquine ratio (debrisoquine metabolic ratio) was determined in a panel of 16 Caucasian healthy volunteers with zero (poor metabolizers), one, two or more than two (ultrarapid metabolizers) CYP2D6 active genes. Significant correlation (p<0.05) between the number of CYP2D6 active genes and the hydroxylation capacity of the enzyme was found. The present HPLC method was simple, fast and accurate, and thus will be useful for the evaluation of CYP2D6 hydroxylation capacity in pharmacogenetic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/CCLM.2005.046 | DOI Listing |
Propafenone is an antiarrhythmic drug applied to ventricular arrhythmias, initially recognized as a sodium channel blocker. This study aims to evaluate the bioequivalence of two propafenone formulations (300 mg tablet) in healthy subjects under non-fasting conditions. The study was conducted as an open, randomized, 2-period design with a 2-sequence (RT, TR) with a 1-week washout interval.
View Article and Find Full Text PDFOBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified.
View Article and Find Full Text PDFPharmacogenomics
September 2016
Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
Aim: This study was aimed to functionally characterize four novel CYP2D6 alleles identified in Chinese Han population.
Materials & Methods: CYP2D6 proteins of wild-type and the four novel variants along with CYP2D6.2 and CYP2D6.
J Phys Chem B
February 2013
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 771 46, Olomouc, Czech Republic.
The penetration properties of drug-like molecules on human cell membranes are crucial for understanding the metabolism of xenobiotics and overall drug distribution in the human body. Here, we analyze partitioning of substrates of cytochrome P450s (caffeine, chlorzoxazone, coumarin, ibuprofen, and debrisoquine) and their metabolites (paraxanthine, 6-hydroxychlorzoxazone, 7-hydroxycoumarin, 3-hydroxyibuprofen, and 4-hydroxydebrisoquine) on two model membranes: dioleoylphosphatidylcholine (DOPC) and palmitoyloleoylphophatidylglycerol (POPG). We calculated the free energy profiles of these molecules and the distribution coefficients on the model membranes.
View Article and Find Full Text PDFDrug Metab Dispos
January 2012
Department of In Vitro Metabolism, Huntingdon Life Sciences Ltd., Woolley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, UK.
The objective of this study was to define CYP2D enzymes in marmoset (Callithrix jacchus) liver microsomes, both at the activity level using debrisoquine as the model substrate and at the protein level using antibodies raised to human CYP2D6. Marmoset liver microsomes were incubated with [(14)C]debrisoquine, and the structure of the generated metabolites was determined using liquid chromatography-tandem mass spectrometry and NMR. Marmoset liver microsomes were very effective in hydroxylating debrisoquine at various positions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!