Large sample sizes of uranyl ions are eluted on a strenedivinylbenzene copolymer phase and an octadecyl phase column, respectively, using alpha-hydroxyisobutyric acid (alpha-HiBA) as an eluent. Chromatograms are obtained from variations of the uranyl sample amounts, eluent concentrations, concentrations of the sample matrix, and the pH of the sample solution for both columns, respectively. Column capacities are estimated from the loading factors measured from the retention times of the peaks. Bandwidths of the peaks and apparent column efficiencies are measured as a function of the loading factor and calculated using the equations derived from the assumptions of a Langmuir isotherm for a single solute. Comparison between the experiment and the calculation reveals that the former showed a broader bandwidth and worse column efficiency than the latter for both columns. The two columns are compared with regards to the retention time, peak shape, column capacity, column efficiency, etc. The PRP-1 column shows a rectangular-, triangle-type peak shape, longer retention time, lower column capacity, and better column efficiency, and the LC-18 column shows a distorted Gaussian curve, shorter retention time, higher column capacity, and worse column efficiency. Column capacity, peak shape, and retention time are dependent on the eluent concentration rather than the alpha-HiBA concentration in the sample solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/43.3.141DOI Listing

Publication Analysis

Top Keywords

column efficiency
16
retention time
16
column capacity
16
column
13
peak shape
12
large sample
8
uranyl ions
8
alpha-hydroxyisobutyric acid
8
worse column
8
sample
6

Similar Publications

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

Illegal additives such as oxyphenisatine and its esters are prevalent in the slimming food industry, necessitating a robust analytical method for their detection. This study presents a novel UPLC-MS/MS method for the rapid and accurate quantification of total oxyphenisatine levels in fermented green plum, following hydrolysis of its esters. An efficient ultrasonic extraction with a methanol and 0.

View Article and Find Full Text PDF

Embelin (EMB) and Piperine (PIP) alkaloids are reported for -antidiabetic, hypolipidemic, antioxidant, and anti-cancer properties. However, simultaneous analytical methods are scarce. A stability-indicating RP-HPLC method was developed with mobile phase MeOH: 0.

View Article and Find Full Text PDF

17α-methyltestosterone exposure disrupted growth, liver physiology and intestinal microbial on fish: A case study on migratory bony fishes (Takifugu fasciatus).

Mar Pollut Bull

January 2025

College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China. Electronic address:

17α-methyltestosterone (17α-MT) is prevalent in the aqueous environment, but its toxicological profile remains incomplete. This study analyzed the effects of different 17α-MT concentrations on the growth performance, mortality, sex ratio, liver physiological metabolism, and intestinal microorganisms of Takifugu fasciatus, and on the microorganisms composition of its culture environment. Results showed that 17α-MT increased the male ratio and mortality but inhibited the growth of T.

View Article and Find Full Text PDF

Capturing circulating tumor cells (CTCs) in vivo from the bloodstream lessens tumor metastasis and recurrence risks. However, the absence of CTC receptors due to epithelial-mesenchymal transition (EMT), the limited binding capacity of a single ligand, and the complexity of the blood flow environment significantly reduce the efficiency of CTC capture in vivo. Herein, a multivalent ligand-decorated microsphere enrichment system (MLMES) is crafted that incorporates a capture column replete with an immunosorbent that precisely recognizes and binds the stably expressed cluster of differentiation 44 (CD44) and glucose transporter protein 1 (GLUT1) receptors present on the exterior of CTCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!