Background: Various methods have been applied for the treatment of periimplantitis lesions. It has been reported that the procedures used have been effective in eliminating the inflammatory lesion but that re-osseointegration to the once-contaminated implant surface has been difficult or impossible to achieve.
Purpose: The aim of this study was to examine the use of carbon dioxide (CO2) laser in combination with hydrogen peroxide in the treatment of experimentally induced periimplantitis lesions.
Materials And Methods: Three dental implants (ITI Dental Implant System, Straumann AG, Waldenburg, Switzerland) were placed in each side of the edentulous mandible of four beagle dogs. Implants with a turned surface and implants with a sand-blasted large-grit acid-etched (SLA) surface (SLA, Straumann AG, Waldenburg, Switzerland) were used. Experimental periimplantitis was induced during 3 months. Five weeks later each animal received tablets of amoxicillin and metronidazole for a period of 17 days. Three days after the start of the antibiotic treatment, full-thickness flaps were elevated, and the granulation tissue in the bone craters was removed. In the two anterior implant sites in both sides of the mandible, a combination of CO2 laser therapy and application of a water solution of hydrogen peroxide was used. The implant in the posterior site of each quadrant was cleaned with cotton pellets soaked in saline. Biopsy specimens were obtained 6 months later.
Results: The amount of re-osseointegration was 21% and 82% at laser-treated turned-surface implants and SLA implants, respectively, and 22% and 84% at saline-treated turned-surface implants and SLA implants, respectively.
Conclusions: The present study demonstrated the following: (1) a combination of systemic antibiotics and local curettage and debridement resulted in the resolution of experimentally induced periimplantitis lesions; (2) at implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of re-osseointegration occurred at implants with an SLA surface; and (3) the use of CO2 laser and hydrogen peroxide during surgical therapy had no apparent effect on bone formation and re-osseointegration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1708-8208.2004.tb00039.x | DOI Listing |
Front Pharmacol
January 2025
Department of Ultrasound, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Introduction: Tumor tissues exhibit significantly lower oxygen partial pressure compared to normal tissues, leading to hypoxia in the tumor microenvironment and result in resistance to tumor treatments. Strategies to mitigate hypoxia include enhancing blood perfusion and oxygen supply, for example,by decomposing hydrogen peroxide within the tumor. Improving hypoxia in the tumor microenvironment could potentially improve the efficacy of cancer treatments.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Institute of Ceramics Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, CHINA.
Pairing photocatalytic 1,2,3,4-tetrahydroisoquinoline semi-dehydrogenation reaction (THIQ-SDR) with two-electron oxygen reduction reaction (2e- ORR) is a green solar to chemical strategy by simultaneously utilizing the photo-excited electrons and holes. However, it is still short of high-efficiency photocatalyst to drive two reactions above. In the present work, crystalline pyrene-thiourea/urea covalent organic frameworks (COF-Py-S and -O) were synthesized and demonstrated as high-performance metal-free photocatalysts.
View Article and Find Full Text PDFBackground: Atherosclerosis (AS) is caused by the endothelium injury associated with oxidative stress. Previous studies have shown that the Phlegm-Eliminating and Stasis- Transforming Decoction (Huayu Qutan Decoction, HYQTD) has mitochondrial protective function. The objective of this research was to explore how HYQTD drug-containing serum (HYQTD-DS) could potentially protect mitochondrial energy production in endothelial cells (ECs) from injury caused by hydrogen peroxide (H2O2)-induced oxidative damage in AS through SIRT1/PGC-1α/ Nrf2 pathway.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2025
Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China.
Objectives: The osteogenic potential of periodontal ligament stem cells (PDLSCs) is crucial for periodontal tissue regeneration. Prolonged and excessive oxidative stress (OS) impairs the osteogenic function of PDLSCs. Recently, Semaphorin 3A (Sema3A) has been reported to have multiple roles in bone protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!