An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.

J Comput Chem

Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP, Brasil.

Published: July 2005

An accurate relativistic universal Gaussian basis set (RUGBS) from H through No without variational prolapse has been developed by employing the Generator Coordinate Dirac-Fock (GCDF) method. The behavior of our RUGBS was tested with two nuclear models: (1) the finite nucleus of uniform proton-charge distribution, and (2) the finite nucleus with a Gaussian proton-charge distribution. The largest error between our Dirac-Fock-Coulomb total energy values and those calculated numerically is 8.8 mHartree for the No atom.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20223DOI Listing

Publication Analysis

Top Keywords

accurate relativistic
8
relativistic universal
8
universal gaussian
8
gaussian basis
8
basis set
8
variational prolapse
8
finite nucleus
8
proton-charge distribution
8
gaussian
4
set hydrogen
4

Similar Publications

Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).

View Article and Find Full Text PDF

Conformational Space of 3-Chloropropionic Acid in Gas Phase Explored by Rotational Spectroscopy.

J Phys Chem A

January 2025

Departamento de Química Física y Química Inorgánica, Facultad de Ciencias─I.U. CINQUIMA, Paseo de Belén, 7, 47011 Valladolid, Spain.

The conformational space of 3-chloropropionic acid has been studied under the isolated conditions of a supersonic expansion using Stark-modulated free-jet absorption millimeter-wave and centimeter-wave chirped-pulse Fourier transform microwave spectroscopy techniques. The rotational spectra originating from the three most stable conformers including Cl and Cl isotopologues were observed in both experiments using helium expansion while a partial conformational relaxation involving skeletal rearrangements takes place in an argon expansion. The rotational parameters, geometries, and energy order were determined from the experiment, allowing a comparison with quantum chemical predictions.

View Article and Find Full Text PDF

P , T -odd effects in YbCu, YbAg, and YbAu.

J Chem Phys

December 2024

Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

In this work, the molecular enhancement factors of the P,T-odd interactions involving the electron electric dipole moment (Wd) and the scalar-pseudoscalar nucleon-electron couplings (Ws) are computed for the ground state of the bimetallic molecules YbCu, YbAg, and YbAu. These systems offer a promising avenue for creating cold molecules by associating laser-cooled atoms. The relativistic coupled-cluster approach is used in the calculations, and a thorough uncertainty analysis is performed to give accurate and reliable uncertainties to the obtained values.

View Article and Find Full Text PDF

Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations.

J Phys Chem A

November 2024

Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.

Article Synopsis
  • The paper discusses an advanced method called COOX, which is adapted to calculate core excitations using a constraint-based approach in density functional theory (DFT).
  • COOX combines elements like spin-unrestricted formalism and relativistic corrections to deliver highly accurate results for core excitations in second- and third-period atoms, with small errors.
  • The method also shows strong performance for heavier atoms and is competitive with established techniques like ΔSCF, making it a valuable tool for simulating X-ray absorption spectra with better convergence and lower computational costs.
View Article and Find Full Text PDF

Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!