An accurate relativistic universal Gaussian basis set (RUGBS) from H through No without variational prolapse has been developed by employing the Generator Coordinate Dirac-Fock (GCDF) method. The behavior of our RUGBS was tested with two nuclear models: (1) the finite nucleus of uniform proton-charge distribution, and (2) the finite nucleus with a Gaussian proton-charge distribution. The largest error between our Dirac-Fock-Coulomb total energy values and those calculated numerically is 8.8 mHartree for the No atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.20223 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Química Física y Química Inorgánica, Facultad de Ciencias─I.U. CINQUIMA, Paseo de Belén, 7, 47011 Valladolid, Spain.
The conformational space of 3-chloropropionic acid has been studied under the isolated conditions of a supersonic expansion using Stark-modulated free-jet absorption millimeter-wave and centimeter-wave chirped-pulse Fourier transform microwave spectroscopy techniques. The rotational spectra originating from the three most stable conformers including Cl and Cl isotopologues were observed in both experiments using helium expansion while a partial conformational relaxation involving skeletal rearrangements takes place in an argon expansion. The rotational parameters, geometries, and energy order were determined from the experiment, allowing a comparison with quantum chemical predictions.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
In this work, the molecular enhancement factors of the P,T-odd interactions involving the electron electric dipole moment (Wd) and the scalar-pseudoscalar nucleon-electron couplings (Ws) are computed for the ground state of the bimetallic molecules YbCu, YbAg, and YbAu. These systems offer a promising avenue for creating cold molecules by associating laser-cooled atoms. The relativistic coupled-cluster approach is used in the calculations, and a thorough uncertainty analysis is performed to give accurate and reliable uncertainties to the obtained values.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.
J Chem Phys
October 2024
Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany.
Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!