Lately several naturally occurring peptides presenting antimicrobial activity have been described in the literature. However, snake venoms, which are an enormous source of peptides, have not been fully explored for searching such molecules. The aim of this work is to review the basis of antimicrobial mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore, it includes (i) a description of the constituents of the snake venoms involved in their main biological effects during the envenomation process; (ii) examples of snake venom molecules of commercial use; (iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics and complementary and alternative medicine (CAM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062156PMC
http://dx.doi.org/10.1093/ecam/neh063DOI Listing

Publication Analysis

Top Keywords

snake venom
12
snake venoms
12
snake
6
venom clue
4
antibiotics
4
clue antibiotics
4
antibiotics cam?
4
cam? naturally
4
naturally occurring
4
occurring peptides
4

Similar Publications

Objective: The expansion of human activities in northern Colombia has increased human-snake encounters, particularly with venomous . Given the limited knowledge of systemic envenomation effects and previous studies focusing only on early murine symptoms, this investigation aimed to describe the time-course physiopathology of envenomation following intramuscular injection .

Methods: Venom was inoculated in the gastrocnemius muscles of Swiss Webster mice, and blood, urine, and tissue samples were taken at different times to evaluate lethality and biochemical markers of renal function and oxidative stress.

View Article and Find Full Text PDF

Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition.

Arch Toxicol

January 2025

Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

Article Synopsis
  • Snake envenomation is a major global health issue, particularly in rural areas of tropical and subtropical regions, highlighting the need for better therapeutic approaches.
  • Traditional antivenoms have limitations, but advancements in omics technologies like metabolomics and proteomics are improving our understanding of venom and potential treatments.
  • By exploring metabolic changes and identifying venom proteins, researchers aim to develop novel inhibitors and next-generation antivenoms, ultimately leading to more effective treatments for snake bites.
View Article and Find Full Text PDF

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

Background: Hump-nosed viper (Hypnale species) bites are an important cause of mortality and morbidity in southern India and Sri Lanka, accounting for 27 and 77% of venomous snake bites, respectively. Previously, we knew them to be moderately venomous snakes, primarily causing local envenomation. However, recent reports have indicated severe systemic envenomation incidents, which include hemostatic dysfunction, microangiopathic hemolysis, kidney injury, myocardial toxicity, and even death.

View Article and Find Full Text PDF

Snakebite envenomation is a public health issue that can lead to mortality and physical consequences. It is estimated that 5.4 million venomous snake bites occur annually, with 130,000 deaths and 400,000 amputations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!