Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inherited deficiency of glutaryl-CoA dehydrogenase results in an accumulation of glutaryl-CoA, glutaric, and 3-hydroxyglutaric acids. If untreated, most patients suffer an acute encephalopathic crisis and, subsequently, acute striatal damage being precipitated by febrile infectious diseases during a vulnerable period of brain development (age 3 and 36 months). It has been suggested before that some of these organic acids may induce excitotoxic cell damage, however, the relevance of bioenergetic impairment is not yet understood. The major aim of our study was to investigate respiratory chain, tricarboxylic acid cycle, and fatty acid oxidation in this disease using purified single enzymes and tissue homogenates from Gcdh-deficient and wild-type mice. In purified enzymes, glutaryl-CoA but not glutaric or 3-hydroxyglutaric induced an uncompetitive inhibition of alpha-ketoglutarate dehydrogenase complex activity. Notably, reduced activity of alpha-ketoglutarate dehydrogenase activity has recently been demonstrated in other neurodegenerative diseases, such as Alzheimer, Parkinson, and Huntington diseases. In contrast to alpha-ketoglutarate dehydrogenase complex, no direct inhibition of glutaryl-CoA, glutaric acid, and 3-hydroxyglutaric acid was found in other enzymes tested. In Gcdh-deficient mice, respiratory chain and tricarboxylic acid activities remained widely unaffected, virtually excluding regulatory changes in these enzymes. However, hepatic activity of very long-chain acyl-CoA dehydrogenase was decreased and concentrations of long-chain acylcarnitines increased in the bile of these mice, which suggested disturbed oxidation of long-chain fatty acids. In conclusion, our results demonstrate that bioenergetic impairment may play an important role in the pathomechanisms underlying neurodegenerative changes in glutaryl-CoA dehydrogenase deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M502845200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!