Pectinate (feathery) antennae have high resistance to air flow, and therefore most of the air approaching an antenna is diverted around it and is not available for chemical sampling by the sensory hairs on that antenna. The small fraction (approximately 10-20%) of approaching air that passes through the air spaces or gaps in the antenna decelerates and the streamlines diverge as the air approaches the antenna. Sampling a small fraction of air that is decelerating and diverging has consequences for chemoreception that are described here for the first time. The behavior of the air is predicted from application of a fluid mechanical law: the principle of continuity. As this small fraction of air decelerates and flows through the air gaps in the antenna, it will be "stretched" in the plane perpendicular to the air flow. Therefore, the air may be sampled by the sensory hairs at a greater spatial resolution than expected from the distribution of the odorant molecules in the air upstream of the antenna. However, the slowing down of odorant-laden air as it passes through an antenna will not change the perceived temporal characteristics of the chemical stimulus (e.g., the rate of odorant filament encounter). This distortion or stretching of the air sample is expected to develop within about one antennal width upstream of the antenna, as verified by examining wakes of simple physical models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-005-0969-1DOI Listing

Publication Analysis

Top Keywords

air
14
small fraction
12
antenna
9
consequences chemoreception
8
air flow
8
flow air
8
sensory hairs
8
air passes
8
gaps antenna
8
fraction air
8

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

The excellent optical and electronic properties of halide perovskite materials have attracted researchers to investigate this particular field. However, the instability in ambient conditions and toxicity of materials like lead have given some setbacks to commercial use. To overcome these issues, perovskite-inspired materials with less toxic and excellent air-stable materials are being studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!