To assess the potential value of intermittent artificial gravity as an efficient countermeasure, our previous studies have showed that daily 4-h standing (STD) is sufficient in counteracting muscle atrophy but not bone atrophy induced by simulated microgravity. The aim of the present study was to determine whether intermittent gravitational loading by daily 2-h or 4-h, +45 degrees head-up tilt (HUT) is more effective than STD in counteracting muscle and, particularly, bone atrophy due to simulated microgravity. Sprague-Dawley male rats weighing 290-300 g were subjected to a 28-d tail-suspension to simulate microgravity deconditioning. Daily HUT for 2, or 4 h was used to provide intermittent gravitational loading in foot-ward and tail-ward directions. The results showed that 4 h/d HUT was sufficient, and 2 h/d was less effective, in preventing adverse changes in muscle weights, fiber types, and cross-sectional areas (CSA) of muscles due to a 28-d simulated microgravity. The % protections by 4 h/d HUT in maintaining the CSAs of type I fibers in soleus, medial and lateral gastrocnemius and extensor digitorum longus muscles were 103%, 82%, 102%, and 83%, respectively. However, according to changes in physical and mechanical properties of femur, daily 4-h HUT was ineffective in attenuating the adverse changes in bone due to a 28-d simulated microgravity. Reductions in wet, dry, and ash weights and decreases in mechanical strength of femur did not show significant improvement by daily 2-h or 4-h HUT. Taken together, the findings indicate that the countermeasure effectiveness of daily 2-h or 4-h HUT for muscles is comparable with that by daily STD with the same durations. Daily 4-h HUT, as 4-h STD, is also ineffective in attenuating adverse changes in bone mass, but seems partially effective in preventing declines in mechanical properties due to simulated microgravity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

simulated microgravity
24
daily 4-h
16
4-h hut
16
effective preventing
12
bone atrophy
12
daily 2-h
12
2-h 4-h
12
adverse changes
12
daily
9
head-up tilt
8

Similar Publications

Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP.

View Article and Find Full Text PDF

Introduction: During centrifuge-simulated suborbital spaceplane flights, launch and re-entry frequently cause visual symptoms, and G-induced loss of consciousness can occur. G-related effects may be more prominent during re-entry from microgravity on actual flights. A modified anti-G maneuver that does not involve a breath strain and is suitable for members of the public may be effective against these effects.

View Article and Find Full Text PDF

Introduction: Facial expression perception is the process by which someone can interpret the emotion of another individual using their facial cues. Below-average scores on tests designed to measure facial expression recognition (FER) accuracies are associated with inappropriate behavioral responses and are often linked to mental or neurological disorders. Head-down bed rest microgravity analog studies show changes in facial emotion processing that may indicate a behavioral health risk during spaceflight.

View Article and Find Full Text PDF

Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8).

View Article and Find Full Text PDF

Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies.

Mechanobiol Med

December 2024

C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.

Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two "space embryo" studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!