Postinhibitory rebound (PIR) is defined as membrane depolarization occurring at the offset of a hyperpolarizing stimulus and is one of several intrinsic properties that may promote rhythmic electrical activity. PIR can be produced by several mechanisms including hyperpolarization-activated cation current (I(h)) or de-inactivation of depolarization-activated inward currents. Excitatory swim motor neurons in the leech exhibit PIR in response to injected current pulses or inhibitory synaptic input. Serotonin, a potent modulator of leech swimming behavior, increases the peak amplitude of PIR and decreases its duration, effects consistent with supporting rhythmic activity. In this study, we performed current clamp experiments on dorsal excitatory cell 3 (DE-3) and ventral excitatory cell 4 (VE-4). We found a significant difference in the shape of PIR responses expressed by these two cell types in normal saline, with DE-3 exhibiting a larger prolonged component. Exposing motor neurons to serotonin eliminated this difference. Cs+ had no effect on PIR, suggesting that I(h) plays no role. PIR was suppressed completely when low Na+ solution was combined with Ca2+-channel blockers. Our data support the hypothesis that PIR in swim motor neurons is produced by a combination of low-threshold Na+ and Ca2+ currents that begin to activate near -60 mV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-005-0628-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!