To study the molecular mechanisms for load-induced activation of BNP gene expression, increased wall stress was imposed on isolated isovolumetrically beating adult rat hearts by distension of a fluid filled balloon within the left ventricle. The wall stress for 2 h resulted in a 1.6-fold increase in the expression of BNP gene and a 2.0-fold increase of the c-fos gene. The inhibition of transcription by actinomycin D significantly decreased the baseline BNP mRNA levels but the wall stretch-induced increase of the gene expression remained unaffected. In contrast, the protein synthesis inhibitor cycloheximide increased baseline BNP mRNA levels and abolished the load-induced activation of gene expression. Furthermore, we studied the effects of protein kinase C (PKC), calcineurin and protein phosphatase 2A (PP2A) inhibition to characterize the role of intracellular pathways in the stretch-induced gene expression in the left ventricle. The expression of BNP and c-fos genes were not influenced by calcineurin, PP2A and PKC inhibition. In conclusion, we showed that the stretch-induced activation of BNP gene expression by increased left ventricular wall stress is independent of transcriptional mechanisms and dependent on protein synthesis. Moreover, our results suggest that the load-induced activation of BNP gene expression is independent of calcineurin, PKC and PP2A.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2004.12.024DOI Listing

Publication Analysis

Top Keywords

gene expression
28
bnp gene
20
activation bnp
16
wall stress
16
load-induced activation
12
gene
9
expression
9
bnp
8
increased left
8
left ventricular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!