Diencephalic and mesencephalic influences on ponto-medullary respiratory control in normoxic and hypoxic conditions: an in vitro study on central nervous system preparations from newborn rat.

Neuroscience

Laboratoire de Dysrégulations Métaboliques Acquises et Génétiques, UPRES EA 3901, Faculté de Médecine, Université de Picardie Jules Verne, 3 Rue des Louvels, 80036 Amiens cedex 1, France.

Published: August 2005

We investigated the effects of the diencephalon and mesencephalon on the central respiratory drive originating from ponto-medullary regions in normoxic and hypoxic conditions, using central nervous system preparations from newborn rats. We used two approaches: 1) electrophysiological analysis of respiratory frequency and the amplitude of inspiratory C4 activity and 2) immunohistochemical detection of Fos protein, an activity-dependent neuronal marker. We found that, in normoxic conditions, the mesencephalon moderated respiratory frequency, probably by means of an inhibitory effect on ventral medullary respiratory neurons. Diencephalic inputs restored respiratory frequency. Moreover, O(2)-sensing areas in the diencephalon (caudal lateral and posterior hypothalamic areas) and mesencephalon (ventrolateral and dorsolateral periaqueductal gray) seem to increase the amplitude of respiratory bursts during adaptation of the central respiratory drive to hypoxia. In contrast, decrease in respiratory frequency during hypoxia is thought to be mediated by a cluster of ventral hypothalamic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2004.12.011DOI Listing

Publication Analysis

Top Keywords

respiratory frequency
16
respiratory
9
normoxic hypoxic
8
hypoxic conditions
8
central nervous
8
nervous system
8
system preparations
8
preparations newborn
8
central respiratory
8
respiratory drive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!