Effect of tidal volume and respiratory rate on the power of breathing calculation.

Acta Anaesthesiol Scand

Department of Anaesthesia, Intensive Care and Emergency, Poliambulanza Hospital, Via Bissolati 57, 25124 Brescia, Italy.

Published: May 2005

Background: The power of breathing (PoB) is used to estimate the mechanical workload of the respiratory system. Aim of this study was to investigate the effect of different tidal volume-respiratory rate combinations on the PoB when the elastic load is constant. In order to assure strict control of the experimental conditions, the PoB was calculated on an airway pressure-volume curve in mechanically ventilated patients.

Methods: Ten patients received three different tidal volume-respiratory rate combinations while minute ventilation was constant. Respiratory mechanics, PoB and its elastic and resistive components were calculated. Alternative methods to estimate the elastic workload were assessed: elastic work of breathing per litre per minute, elastic workload index (the square root of elastic work of breathing multiplied by respiratory rate) and elastic double product of the respiratory system (the elastic pressure multiplied by respiratory rate).

Results: Despite constant elastance and minute ventilation, the elastic PoB showed an increment greater than 200% from the lower to the greater tidal volume, accounting for approximately 80% of the whole PoB increment. On the contrary, elastic work of breathing per litre per minute, elastic workload index and elastic double product did not change.

Conclusion: Changes in breathing pattern markedly affect the PoB despite constant mechanical load. Other indexes could assess the elastic workload without tidal volume dependence. Power of breathing use should be avoided to compare different mechanical loads or efficiencies of the respiratory muscles when tidal volume is variable.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-6576.2005.00664.xDOI Listing

Publication Analysis

Top Keywords

tidal volume
16
elastic workload
16
elastic
13
power breathing
12
elastic work
12
work breathing
12
respiratory rate
8
respiratory system
8
tidal volume-respiratory
8
volume-respiratory rate
8

Similar Publications

Improving lung protective mechanical ventilation: the individualised intraoperative open-lung approach.

Br J Anaesth

February 2025

CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain.

Despite the maturity and sophistication of anaesthesia workstations, improvements in our understanding of intraoperative mechanical ventilation, and use of less invasive surgical techniques, postoperative pulmonary complications (PPCs) are still a common problem in surgical patients of all ages. PPCs are associated with a higher incidence of perioperative morbidity and mortality, longer hospital stays, and higher healthcare costs. PPCs are strongly associated with anaesthesia-induced atelectasis, which predisposes to lung damage when partially collapsed lungs are subjected to mechanical ventilation.

View Article and Find Full Text PDF

Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).

Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.

View Article and Find Full Text PDF

Background: The number of infants born via cesarean section (CS) is increasing globally due to medical and cultural reasons.

Objectives: This study aimed to determine the effect of the mode of delivery on early lung aeration in newborns using electrical impedance tomography (EIT).

Material And Methods: The case-control study was conducted from December 2020 to April 2021.

View Article and Find Full Text PDF

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (N-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!