Huntington disease is caused by polyglutamine (polyQ) expansion in huntingtin. Selective and progressive neuronal loss is observed in the striatum and cerebral cortex in Huntington disease. We have addressed whether expanded polyQ aggregates appear in regions of the brain apart from the striatum and cortex and whether there is a correlation between expanded polyQ aggregate formation and dysregulated transcription. We generated transgenic mouse lines expressing mutant truncated N-terminal huntingtin (expanded polyQ) fused with enhanced green fluorescent protein (EGFP) and carried out a high-density oligonucleotide array analysis using mRNA extracted from the cerebrum, followed by TaqMan RT-PCR and in situ hybridization. The transgenic mice formed expanded polyQ-EGFP fluorescent aggregates and this system allowed us to directly visualize expanded polyQ aggregates in various regions of the brain without performing immunohistochemical studies. We show here that polyQ-EGFP aggregates were intense in the hypothalamus, where the expression of six hypothalamic neuropeptide mRNAs, such as oxytocin, vasopressin and cocaine-amphetamine-regulated transcript, was down-regulated in the transgenic mouse brain without observing a significant loss of hypothalamic neurons. These results indicate that the hypothalamus is susceptible to aggregate formation in these mice and this may result in the down-regulation of specific genes in this region of the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2005.03035.x | DOI Listing |
Mol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan.
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287.
Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnical University, St Petersburg, 195251, Russian Federation. Electronic address:
The expansion of glutamine residue track (polyQ) within soluble proteins (Q proteins) is responsible for nine autosomal-dominant genetic neurodegenerative disorders. These disorders develop when polyQ expansion exceeds a specific pathogenic threshold (Q) which is unique for each disease. However, the pathogenic mechanisms associated with the variability of Q within the family of Q proteins are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!