The properties of bicontinuous microemulsions, consisting of water, oil, and a surfactant, can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. Here, the influence of the addition of homopolymers (PEP(X) and PEO(X), X=5k or 10k molecular weight) on the dynamics of the surfactant layer is studied with neutron spin echo spectroscopy (NSE). Combining the results with the previous findings for diblock copolymers allows for a better separation of viscosity and bending modulus effects. With the addition of homopolymers, a significant increase of the relaxation rate compared to the pure microemulsion has been observed. The influence on the bending rigidity kappa is measured with NSE experiments. Homopolymer addition reduces kappa by up to Deltakappa approximately -0.5k(B)T, whereas the diblock copolymer yields an increase of kappa by approximately 0.3k(B)T. Comparison of the bending moduli that are obtained by analysis of the dynamics to those obtained from small angle neutron scattering (SANS) sheds light on the different renormalization length scales for NSE and SANS. Variation of the surfactant concentration at otherwise constant conditions of homopolymer or diblock-copolymer concentration shows that NSE results are leading to the pure bending rigidity, while the renormalized one is measured with SANS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1857523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!