The thermal decomposition of hydroxyl-terminated generation-4 polyamidoamine dendrimer (G4OH) films deposited on Au surfaces has been compared with decomposition of the same dendrimer encapsulating an approximately 40-atom Pt particle (Pt-G4OH). Infrared absorption reflection spectroscopy studies showed that, when the films were heated in air to various temperatures up to 275 degrees C, the disappearance of the amide vibrational modes occurred at lower temperature for the Pt-G4OH film. Dendrimer decomposition was also investigated by thermogravimetric analysis (TGA) in both air and argon atmospheres. For the G4OH dendrimer, complete decomposition was achieved in air at 500 degrees C, while decomposition of the Pt-G4OH dendrimer was completed at 400 degrees C, leaving only platinum metal behind. In a nonoxidizing argon atmosphere, a greater fraction of the G4OH decomposed below 300 degrees C, but all of the dendrimer fragments were not removed until heating above 550 degrees C. In contrast, Pt-G4OH decomposition in argon was similar to that in air, except that decomposition occurred at temperatures approximately 15 degrees C higher. Thermal decomposition of the dendrimer films on Au surfaces was also studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum conditions. Heating the G4OH films to 250 degrees C during the TPD experiment induced the desorption of large dendrimer fragments at 55, 72, 84, 97, 127, 146, and 261 amu. For the Pt-G4OH films, mass fragments above 98 amu were not observed at any temperature, but much greater intensities for H(2) desorption were detected compared to that of the G4OH film. XPS studies of the G4OH films demonstrated that significant bond breaking in the dendrimer did not occur until temperatures above 250 degrees C and heating to 450 degrees C caused dissociation of C=O, C-O, and C-N bonds. For the Pt-G4OH dendrimer films, carbon-oxygen and carbon-nitrogen bond scission was observed at room temperature, and further decomposition to atomic species occurred after heating to 450 degrees C. All of these results are consistent with the fact that the Pt particles inside the G4OH dendrimer catalyze thermal decomposition, allowing dendrimer decomposition to occur at lower temperatures. However, the Pt particles also catalyze bond scission within the dendrimer fragments so that decomposition of the dendrimer to gaseous hydrogen is the dominant reaction pathway compared to desorption of the larger dendrimer fragments observed in the absence of Pt particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la047242n | DOI Listing |
Nanomaterials (Basel)
January 2025
Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).
View Article and Find Full Text PDFNanoscale Adv
December 2024
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China. Electronic address:
Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, difficulty in thermoforming and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:
The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!