The space flight or simulated gravitational unloading lead to the muscle atrophy, slow-to-fast transformation of muscle fibers and myofibrillar damages both in humans and animals (1, 7, 13, 17). This process could be prevented by the exercise training during space flight (1), (partly) by periodic weight support during unloading (13). It has been demonstrated in these studies that there is some level of force production necessary for the maintenance of skeletal muscle properties. It is known that adaptation to the physical training frequently induces augmentation in cross-sectional area (CSA) of muscle fibers (MF), transformation of fibers, augmentation of mitochondrial volume density, and increase in absolute volume of myofibrillas. Numerous observations suggest importance of gravitational loading in regulating muscle mass. The centrifuging is believed to be useful for preventing muscle functional and structural losses under microgravity. But there are few studies designed to investigate effect of artificial gravity on the skeletal musculature (2, 7). Our objective was to investigate structural adaptation in slow-twitch soleus muscle (percentage of connective tissue and central nuclei, fiber size, myosin heavy chain isotope, myofibrillar proteins and mitochondria volume density) after 19 and 33 days of hypergravity.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biosciences, Swansea University, Swansea SA2 8PP, UK. Electronic address:
Interview with Emily Shepard, who studies the effects of the aerial environment on bird behaviour, energetics and space use at Swansea University.
View Article and Find Full Text PDFJ Radiol Prot
January 2025
WSU, Richland, Washington, UNITED STATES.
The radium dial painters (RDP) are a well-described group of predominantly young women who incidentally ingested 226Ra and 228Ra as they painted luminescent watch dials in the first part of the twentieth century. In 1974 pathologist Dr. William D.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States.
Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.
View Article and Find Full Text PDFMil Med Res
January 2025
Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!