Most models of light propagation through tissue assume that the scattering properties of various tissue layers are the same. We present evidence that the scattering coefficient of cervical epithelium varies by a factor of 3 within the epithelium owing to variations in nuclear density and to the presence of keratin. We estimated the scattering coefficient from regions of normal and precancerous cervical epithelium by fitting reflectance measurements from confocal images to an exponential function of depth based on Beer's law of attenuation. The results suggest that the normal cervix is characterized by highly variable scattering in the superficial epithelium, low scattering in the intermediate epithelium, and high scattering in the basal and stromal regions. In high-grade dysplasia, high scattering from high-density nuclei is observed throughout the entire epithelium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.44.002072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!