Accomplishments in bioastronautics research aboard International Space Station.

Acta Astronaut

ISS Payloads Office, NASA Johnson Space Center, Houston, TX 77058, USA.

Published: April 2005

The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actaastro.2005.01.014DOI Listing

Publication Analysis

Top Keywords

aboard international
8
international space
8
space station
8
hrf rack
8
iss
5
accomplishments bioastronautics
4
bioastronautics aboard
4
station tenth
4
tenth long-duration
4
long-duration expedition
4

Similar Publications

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans.

Life Sci Space Res (Amst)

February 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.

The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.

View Article and Find Full Text PDF

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Introduction: We examined semantic and phonemic fluency in individuals with subjective cognitive decline (SCD) in relation to amyloid status and clinical progression.

Methods: A total of 490 individuals with SCD (62 ± 8 years, 42% female, 28% amyloid-positive, 17% clinical progression) completed annual fluency assessments (mean ± SD follow-up 4.3 ± 2.

View Article and Find Full Text PDF

Monitoring of indoor air quality at a large sailing cruise ship to assess ventilation performance and disease transmission risk.

Sci Total Environ

January 2025

Centre for Safety, Resilience and Protective Security, Fire Safety Engineering Group, School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, Greenwich SE10 9LS, United Kingdom.

Large passenger ships are characterised as enclosed and crowded indoor spaces with frequent interactions between travellers, providing conditions that facilitate disease transmission. This study aims to provide an indoor ship CO dataset for inferring thermal comfort, ventilation and infectious disease transmission risk evaluation. Indoor air quality (IAQ) monitoring was conducted in nine environments (three cabins, buffet, gym, bar, restaurant, pub and theatre), on board a cruise ship voyaging across the UK and EU, with the study conducted in the framework of the EU HEALTHY SAILING project.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!