The vast majority of androgen-dependent prostate tumors progress toward incurable, androgen-independent tumors. The identification of androgen-responsive genes, which are still actively transcribed in the tumors of patients who have undergone androgen ablation, may shed light on the molecular mechanisms underlying this phenomenon. To address this question, we chose the Dunning R3327 rat model system, in which the progression from androgen-dependent to -independent tumors is represented by several transplantable prostate-derived tumors. Gene expression profiles were analyzed in normal rat prostates and in the prostates of rats 14 days after castration by use of microarrays containing approximately 5,000 oligonucleotides, together representing more than 4,800 known rat genes. These expression profiles were compared with similarly obtained expression profiles of androgen-dependent and androgen-independent rat prostate tumors. By doing so, a series of known and novel prostate cancer-associated androgen-responsive genes was identified. Within this series, we were able to identify several clusters of genes that are differentially regulated in the various prostate tumors. These genes may serve as (i) novel prognostic identifiers and (ii) novel therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.20184DOI Listing

Publication Analysis

Top Keywords

prostate tumors
16
androgen-responsive genes
12
expression profiles
12
identification androgen-responsive
8
androgen-dependent androgen-independent
8
androgen-independent rat
8
rat prostate
8
tumors
8
genes
6
rat
5

Similar Publications

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Rectal gastrointestinal stromal tumors (GISTs) are often asymptomatic and may be detected as giant tumors. This may require highly invasive surgery for radical resection. Here, we describe a 74-year-old man with a locally advanced non-metastatic GIST in the right anterolateral wall of the lower rectum.

View Article and Find Full Text PDF

Purpose: Prostate cancer (PCa) is the second most common cancer in males worldwide, requiring improvements in diagnostic imaging to identify and treat it at an early stage. Bi-parametric magnetic resonance imaging (bpMRI) is recognized as an essential diagnostic technique for PCa, providing shorter acquisition times and cost-effectiveness. Nevertheless, accurate diagnosis using bpMRI images is difficult due to the inconspicuous and diverse characteristics of malignant tumors and the intricate structure of the prostate gland.

View Article and Find Full Text PDF

PSMA-PET/CT has emerged as a superior diagnostic tool for prostate cancer, demonstrating enhanced accuracy over conventional imaging methods. Although sensitive for detecting local and metastatic prostate tumors, it can also identify other non-prostate PSMA positive lesions. Here, we report a rare case of a 67-year-old patient with metastatic prostate adenocarcinoma who was found to have an incidental Gastrointestinal Stromal Tumor (GIST), during restaging with 68Ga-PSMA-11 PET/CT.

View Article and Find Full Text PDF

Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!