Effect of galantamine on the human alpha7 neuronal nicotinic acetylcholine receptor, the Torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity.

Br J Pharmacol

Laboratory of Molecular and Cellular Neurobiology, Department of Cell Biology and Pathology, Medical School-Bellvitge Campus, IDIBELL-Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907, Spain.

Published: July 2005

1. Various types of anticholinesterasic agents have been used to improve the daily activities of Alzheimer's disease patients. It was recently demonstrated that Galantamine, described as a molecule with anticholinesterasic properties, is also an allosteric enhancer of human alpha4beta2 neuronal nicotinic receptor activity. We explored its effect on the human alpha7 neuronal nicotinic acetylcholine receptor (nAChR) expressed in Xenopus oocytes. 2. Galantamine, at a concentration of 0.1 microM, increased the amplitude of acetylcholine (ACh)-induced ion currents in the human alpha7 nAChR expressed in Xenopus oocytes, but caused inhibition at higher concentrations. The maximum effect of galantamine, an increase of 22% in the amplitude of ACh-induced currents, was observed at a concentration of 250 microM Ach. 3. The same enhancing effect was obtained in oocytes transplanted with Torpedo nicotinic acetylcholine receptor (AChR) isolated from the electric organ, but in this case the optimal concentration of galantamine was 1 microM. In this case, the maximum effect of galantamine, an increase of 35% in the amplitude of ACh-induced currents, occurred at a concentration of 50 microM ACh. 4. Galantamine affects not only the activity of post-synaptic receptors but also the activity of nerve terminals. At a concentration of 1 microM, quantal spontaneous events, recorded in a cholinergic synapse, increased their amplitude, an effect which was independent of the anticholinesterasic activity associated with this compound. The anticholinesterasic effect was recorded in preparations treated with a galantamine concentration of 10 microM. 5. In conclusion, our results show that galantamine enhances human alpha7 neuronal nicotinic ACh receptor activity. It also enhances muscular AChRs and the size of spontaneous cholinergic synaptic events. However, only a very narrow range of galantamine concentrations can be used for enhancing effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576175PMC
http://dx.doi.org/10.1038/sj.bjp.0706221DOI Listing

Publication Analysis

Top Keywords

human alpha7
16
neuronal nicotinic
16
nicotinic acetylcholine
16
acetylcholine receptor
16
concentration microm
16
alpha7 neuronal
12
galantamine
10
torpedo nicotinic
8
spontaneous cholinergic
8
cholinergic synaptic
8

Similar Publications

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Left T7 paravertebral nerve blockade activate the α7nAChR-Dependent CAP in patients undergoing thoracoscopic lobectomy: a prospective controlled study.

BMC Anesthesiol

December 2024

Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.

Objective: This study aimed to observe the impact of Tthoracic paravertebral nerve blockade(TPVB) at left T7 level on the α7nAChR-dependent cholinergic anti-inflammatory pathway in patients undergoing thoracoscopic lobectomy.

Methods: Scheduled thoracoscopic lung surgery patients at the First Affiliated Hospital of Nanchang University from August to September 2023 were divided into two groups according to the surgical site. The experimental group underwent left T7 paravertebral nerve blockade (LTPVB group), while the control group underwent right T7 paravertebral nerve blockade (RTPVB group).

View Article and Find Full Text PDF

Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids.

ACS Chem Neurosci

December 2024

Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs.

View Article and Find Full Text PDF

Background: Periodontitis is among the most prevalent inflammatory conditions and greatly impacts oral health. This study aimed to elucidate the role of basement membrane-related genes in the pathogenesis and diagnosis of periodontitis.

Methods: GSE10334 was used for identification of hub genes via the differential analysis, protein-protein interaction network, MCC and DMNC algorithms, and evaluation via LASSO regression and support vector machine analysis to identify basement membrane-related markers in patients with periodontitis.

View Article and Find Full Text PDF

Age-related cognitive decline presents a healthcare challenge. While age-related mechanisms are mainly studied in humans, animal models provide key insights. Despite evidence of sex-specific differences in aging and cognition, the impact of age on female rodent behaviour is underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!